Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.

## Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.

For maximum power transfer to the load in a sinusoidal steady-state network, the load impedance should equal the Thévenin impedance. (TRUE/FALSE)

## For maximum power transfer to the load in a sinusoidal steady-state network, the load impedance should equal the Thévenin impedance. (TRUE/FALSE)

For maximum power transfer to the load in a sinusoidal … Read More...
Nilsson & Riedel 9e, p. 349, Problem 9.13. A 80 kHz sinusoidal voltage has zero phase angle and a maximum amplitude of 25 mV. When this voltage is applied across the terminals of a capacitor, the resulting steady-state current has a maximum amplitude of 628.32 A. Numerical answer is [d] 50.0 nF. a) What is the frequency of the current in radians per second? b) What is the phase angle of the current? c) What is the capacitive reactance of the capacitor? d) What is the capacitance of the capacitor in microfarads? e) What is the impedance of the capacitor?