Q3b.Explain the possible consequences if the above mentioned principles are not followed

Q3b.Explain the possible consequences if the above mentioned principles are not followed

Access Control is an important part of any company’s Security … Read More...
1 Lab Assignment Q1) The PIC16F1937 Memory Banks i) The Special Function Registers within the PIC16F1937 microcontroller are held within a number of memory banks. How many memory banks are there within the PIC16F1937 microcontroller? ii) Explain two methods to show how a special function register within a particular memory bank can be selected. Q1) The TRIS Registers The PIC16F61937 microcontroller has five TRIS registers, TRISA, TRISB, TRISC, TRISD, and TRISE situated in bank 1 in the special function register memory map. i) What is the function of the TRIS registers? ii) How can the TRIS registers in bank 1 be accessed? Write a short program to configure PORTA of the microcontroller as inputs and PORTB of the microcontroller as outputs. For the remaining exercises assume that PORTA is connected to switches and PORTB is connected to LEDs in common cathode configuration (i.e. output a 1 to illuminate). Q2) Key Press Accumulator It is required to produce a system incorporating a microcontroller that keeps count (in binary) of the number of times that a key has been pressed. The key is connected to bit RA0 of PORTA and when pressed should increment the binary value displayed on LEDs connected to PORTB. Write a program to meet the above specification, simulate the program to ensure correct operation, program a microcontroller and test. (Marks allocated for correct program demonstration). 2 Q3) Software Delays The PIC16F1937 assembly language program listed below is a software time delay incorporating two nested loops. value1 equ 0x20 value2 equ 0x21 org 0x00 delay movlw .65 movwf value1 outer movlw .255 movwf value2 inner decfsz value2 goto inner decfsz value1 goto outer wait goto wait By incorporating breakpoints and using the stopwatch determine the amount of time elapsed in the software delay assuming the microcontroller is operating from a 4 MHz crystal oscillator. Compare the value obtained above with that obtained by calculation. Are the time values equal? Q4) Travelling LED program It is required to produce a system incorporating a PIC16F1937 to produce the following sequence on LEDs (travelling LED). And repeat The LEDs are connected to PORTB and the sequence should only start after the key connected to RA0 has been asserted. Should key RA1 be pressed then all of the LEDs should be switched off. The sequence can be set off again by reasserting key RA0. Incorporate a 100ms delay between changes of state of the sequence. Write a program to carry out the above specification, simulate, program a microcontroller and test. (Marks allocated for correct program demonstration). 3 Lab Assignment Checklist Marks allocation: Q1) The PIC16F1937 memory banks Qi) 2% Qii) 2% Q1) TRIS Registers Qi) 2% Qii) 2% Configuration program 4% Q2) Key Press Accumulator Program Flowchart 8% Program 20% Explanation 5% Demonstration 5% Q3) Software Delays By stopwatch 6% By calculation 6% Q4) Travelling LED program Flowchart 8% Program 20% Explanation 5% Demonstration 5% TOTAL 100%

1 Lab Assignment Q1) The PIC16F1937 Memory Banks i) The Special Function Registers within the PIC16F1937 microcontroller are held within a number of memory banks. How many memory banks are there within the PIC16F1937 microcontroller? ii) Explain two methods to show how a special function register within a particular memory bank can be selected. Q1) The TRIS Registers The PIC16F61937 microcontroller has five TRIS registers, TRISA, TRISB, TRISC, TRISD, and TRISE situated in bank 1 in the special function register memory map. i) What is the function of the TRIS registers? ii) How can the TRIS registers in bank 1 be accessed? Write a short program to configure PORTA of the microcontroller as inputs and PORTB of the microcontroller as outputs. For the remaining exercises assume that PORTA is connected to switches and PORTB is connected to LEDs in common cathode configuration (i.e. output a 1 to illuminate). Q2) Key Press Accumulator It is required to produce a system incorporating a microcontroller that keeps count (in binary) of the number of times that a key has been pressed. The key is connected to bit RA0 of PORTA and when pressed should increment the binary value displayed on LEDs connected to PORTB. Write a program to meet the above specification, simulate the program to ensure correct operation, program a microcontroller and test. (Marks allocated for correct program demonstration). 2 Q3) Software Delays The PIC16F1937 assembly language program listed below is a software time delay incorporating two nested loops. value1 equ 0x20 value2 equ 0x21 org 0x00 delay movlw .65 movwf value1 outer movlw .255 movwf value2 inner decfsz value2 goto inner decfsz value1 goto outer wait goto wait By incorporating breakpoints and using the stopwatch determine the amount of time elapsed in the software delay assuming the microcontroller is operating from a 4 MHz crystal oscillator. Compare the value obtained above with that obtained by calculation. Are the time values equal? Q4) Travelling LED program It is required to produce a system incorporating a PIC16F1937 to produce the following sequence on LEDs (travelling LED). And repeat The LEDs are connected to PORTB and the sequence should only start after the key connected to RA0 has been asserted. Should key RA1 be pressed then all of the LEDs should be switched off. The sequence can be set off again by reasserting key RA0. Incorporate a 100ms delay between changes of state of the sequence. Write a program to carry out the above specification, simulate, program a microcontroller and test. (Marks allocated for correct program demonstration). 3 Lab Assignment Checklist Marks allocation: Q1) The PIC16F1937 memory banks Qi) 2% Qii) 2% Q1) TRIS Registers Qi) 2% Qii) 2% Configuration program 4% Q2) Key Press Accumulator Program Flowchart 8% Program 20% Explanation 5% Demonstration 5% Q3) Software Delays By stopwatch 6% By calculation 6% Q4) Travelling LED program Flowchart 8% Program 20% Explanation 5% Demonstration 5% TOTAL 100%

info@checkyourstudy.com Whatsapp +919911743277
In the nineteenth century , states could use______ found in the Tenth Amendment to regulate water usage. 1. state charters , 2. police power, 3. the commerce clause, 4 . trading power, 5. legal precedent .

In the nineteenth century , states could use______ found in the Tenth Amendment to regulate water usage. 1. state charters , 2. police power, 3. the commerce clause, 4 . trading power, 5. legal precedent .

3.  Commerce Clause
6.[ Book Section 7.6] Using Table 7.2, determine which of these fields can be either an electric or a magnetic field (state whether they satisfy the necessary conditions): (a) A˙ (b) B˙ (c) C˙ = 2y3z˙ax + 3(x + 2)yz˙ay − (x − 1)z3˙az = ((z + 1)/ρ)cosφ˙aρ − 2sinφ/ρ˙az = 3/r2(3sinθ˙aφ + cosθ˙aθ )

6.[ Book Section 7.6] Using Table 7.2, determine which of these fields can be either an electric or a magnetic field (state whether they satisfy the necessary conditions): (a) A˙ (b) B˙ (c) C˙ = 2y3z˙ax + 3(x + 2)yz˙ay − (x − 1)z3˙az = ((z + 1)/ρ)cosφ˙aρ − 2sinφ/ρ˙az = 3/r2(3sinθ˙aφ + cosθ˙aθ )

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms

please email info@checkyourstudy.com
BLY 101L – Take Home Assignment (20 pts. TOTAL) Due: Start of class time – Monday, June 30, 2014 OR Tuesday, July 1, 2014 1. Calculate the % of disks floating (%DF) for each time point and both Control and Treatment groups. (5 pts.) • refer to the class notes re: how to do this… 2. Neatly graph experimental results. (5 pts.) • graph paper • Microsoft Excel • refer to the class notes re: how to do this… 3. What was the overarching QUESTION addressed by the lab exercise? (1 pt.) 4. State “null” (H0) and “alternative” (HA) HYPOTHESES. (2 pts.) 5. State your PREDICTION in “If…., then…” format, based upon your knowledge of PS and as written in your lab guide. (1 pt.) 6. Applying what you’ve learned about photosynthesis… • Undoubtedly, you have heard mention of the effect of increasing concentrations of certain gasses (one of which is CO2) in Earth’s atmosphere, and its relevance to Climate Change. Sometime around two decades ago or so, plant scientists began to earnestly think about CO2 level and its effects on plant physiology and growth. Based upon your knowledge of photosynthesis and what you’ve learned from this week’s lab experiment… Formulate testable hypotheses (H0, HA) AND a prediction for this scenario. (3 pts.) • As a follow-on to the previous question and in the context of the experiment you performed in class…Aside from affecting “aesthetics” and habitat for fuzzy wuzzy animals, why are plant and conservation scientists worried about the effects of “clear cutting” (i.e., cutting down forests for development or other agricultural and industrial uses) in combination with rising CO2 levels? (NOTE: O2 HAS NOTHING TO DO WITH THE ANSWER TO THIS QUESTION…; 3 pts.) You MUST hand in the following: o Data table o Line graph of experimental results (plot both data sets on the SAME set of axes; see lecture notes) o Neatly typed answers to questions 3-6 REMEMBER: Images, written text AND/OR ideas are intellectual property and/or copyrighted! If you consult/borrow any published material (e.g., internet webpage text, published paper or report, your textbook, etc.) to construct answers to the questions above, you MUST CITE THE SOURCE FROM WHICH YOU COPIED THE IMAGES, TEXT or IDEAS. See below… Scientific Paper Chase, J. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388-1391. Book Stein, B.A., Kutner, L.S., and Adams, J.S. 2000. Precious Heritage, The Status of Biodiversity in the United States. Oxford University Press, Oxford, England. Webpage NOAA, National Atmospheric and Oceanographic Administration. Accessed 01/05/12. http://www.nhc.noaa.gov/pastall.shtml#tracks_us.

BLY 101L – Take Home Assignment (20 pts. TOTAL) Due: Start of class time – Monday, June 30, 2014 OR Tuesday, July 1, 2014 1. Calculate the % of disks floating (%DF) for each time point and both Control and Treatment groups. (5 pts.) • refer to the class notes re: how to do this… 2. Neatly graph experimental results. (5 pts.) • graph paper • Microsoft Excel • refer to the class notes re: how to do this… 3. What was the overarching QUESTION addressed by the lab exercise? (1 pt.) 4. State “null” (H0) and “alternative” (HA) HYPOTHESES. (2 pts.) 5. State your PREDICTION in “If…., then…” format, based upon your knowledge of PS and as written in your lab guide. (1 pt.) 6. Applying what you’ve learned about photosynthesis… • Undoubtedly, you have heard mention of the effect of increasing concentrations of certain gasses (one of which is CO2) in Earth’s atmosphere, and its relevance to Climate Change. Sometime around two decades ago or so, plant scientists began to earnestly think about CO2 level and its effects on plant physiology and growth. Based upon your knowledge of photosynthesis and what you’ve learned from this week’s lab experiment… Formulate testable hypotheses (H0, HA) AND a prediction for this scenario. (3 pts.) • As a follow-on to the previous question and in the context of the experiment you performed in class…Aside from affecting “aesthetics” and habitat for fuzzy wuzzy animals, why are plant and conservation scientists worried about the effects of “clear cutting” (i.e., cutting down forests for development or other agricultural and industrial uses) in combination with rising CO2 levels? (NOTE: O2 HAS NOTHING TO DO WITH THE ANSWER TO THIS QUESTION…; 3 pts.) You MUST hand in the following: o Data table o Line graph of experimental results (plot both data sets on the SAME set of axes; see lecture notes) o Neatly typed answers to questions 3-6 REMEMBER: Images, written text AND/OR ideas are intellectual property and/or copyrighted! If you consult/borrow any published material (e.g., internet webpage text, published paper or report, your textbook, etc.) to construct answers to the questions above, you MUST CITE THE SOURCE FROM WHICH YOU COPIED THE IMAGES, TEXT or IDEAS. See below… Scientific Paper Chase, J. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388-1391. Book Stein, B.A., Kutner, L.S., and Adams, J.S. 2000. Precious Heritage, The Status of Biodiversity in the United States. Oxford University Press, Oxford, England. Webpage NOAA, National Atmospheric and Oceanographic Administration. Accessed 01/05/12. http://www.nhc.noaa.gov/pastall.shtml#tracks_us.

info@checkyourstudy.com
Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
Why is it important for the ICC to make the distinction between International Armed Conflicts and Non-International Armed Conflicts (NIAC’s)? How does precedent set by the ICJ in the Nicaragua v. U.S. inform precedent in the Tadic Appeals Case with respect to the nature of armed conflict? Third Geneva Convention of 1949 State Responsibility Kaufman v. Belgium Dombo Beheer B.V. vs. Netherlands Articles 20 (1) and (21) 4 European Commission on Human Rights International Convention on Civil and Political Rights American Convention on Human Rights Military Prosecutor v. Omar Mahmud Kassem et al. International Court of Justice Military Prosecutor vs. Omar Mahmud Kassem 1971 “Effective Control” “Demonstrable Link” “Grave Breaches” “Agency Test”

Why is it important for the ICC to make the distinction between International Armed Conflicts and Non-International Armed Conflicts (NIAC’s)? How does precedent set by the ICJ in the Nicaragua v. U.S. inform precedent in the Tadic Appeals Case with respect to the nature of armed conflict? Third Geneva Convention of 1949 State Responsibility Kaufman v. Belgium Dombo Beheer B.V. vs. Netherlands Articles 20 (1) and (21) 4 European Commission on Human Rights International Convention on Civil and Political Rights American Convention on Human Rights Military Prosecutor v. Omar Mahmud Kassem et al. International Court of Justice Military Prosecutor vs. Omar Mahmud Kassem 1971 “Effective Control” “Demonstrable Link” “Grave Breaches” “Agency Test”

info@checkyourstudy.com Why is it important for the ICC to make … Read More...
1 MECE2320U-THERMODYNAMICS HOMEWORK # 5 Instructor: Dr. Ibrahim Dincer Assignment Date: Thursday, 22 October 2015 Assignment Type: Individual Due Date: Thursday, 29 October 2015 (3.00 pm latest, leave in dropbox 8) 1) As shown in figure, the inlet and outlet conditions of a steam turbine are given. The heat loss from turbine is 35 kJ per kg of steam. a) Show all the state points on T-v diagram b) Write mass and energy balance equations c) Calculate the turbine work 2) As shown in figure, refrigerant R134a enters to a compressor. Write both mass and energy balance equations. Calculate the compressor work and the mass flow rate of refrigerant. 3) As shown in figure, the heat exchanger uses the heat of hot exhaust gases to produce steam. Where, 15% of heat is lost to the surroundings. Exhaust gases enters the heat exchanger at 500°C. Water enters at 15°C as saturated liquid and exit at saturated vapor at 2 MPa. Mass flow rate of water is 0.025 kg/s, and for exhaust gases, it is 0.42 kg/s. The specific heat for exhaust gases is 1.045 kJ/kg K, which can be treated as ideal gas. 1 Turbine 2 ? 1 = 1 ??/? ?1 = 1 ??? ?1 = 300 ℃ ?1 = 40 ?/? ? ??? =? ????? = 35 ??/?? ?2 = 150 ??? ?2 = 0.9 ?2 = 180 ?/? 1 Compressor 2 ???? ???? = 1.3 ?3/??? ?1 = 100 ??? ?1 = −20 ℃ ? ?? =? ? ???? = 3 ?? ?2 = 800 ??? ?2 = 60 ℃ 2 a) Write mass and energy balance equations. b) Calculate the rate of heat transfer to the water. c) Calculate the exhaust gases exit temperature. 4) As shown in figure, two refrigerant R134a streams mix in a mixing chamber. If the mass flow rate of cold stream is twice that of the hot stream. a) Write mass and energy balance equations. b) Calculate the temperature of the mixture at the exit of the mixing chamber c) Calculate the quality at the exit of the mixing chamber 5) As shown in figure, an air conditioning system requires airflow at the main supply duct at a rate of 140 m3/min. The velocity inside circular duct is not to exceed 9 m/s. Assume that the fan converts 85% of electrical energy it consumes into kinetic energy of air. a) Write mass and energy balance equations. b) Calculate the size of electric motor require to drive the fan c) Calculate the diameter of the main duct ?2 = 1 ??? ?2 = 90 ℃ ?1 = 1 ??? ?1 = 30 ℃ ?3 =? ?3 =? 140 ?3/??? 9 ?/? Air Fan

1 MECE2320U-THERMODYNAMICS HOMEWORK # 5 Instructor: Dr. Ibrahim Dincer Assignment Date: Thursday, 22 October 2015 Assignment Type: Individual Due Date: Thursday, 29 October 2015 (3.00 pm latest, leave in dropbox 8) 1) As shown in figure, the inlet and outlet conditions of a steam turbine are given. The heat loss from turbine is 35 kJ per kg of steam. a) Show all the state points on T-v diagram b) Write mass and energy balance equations c) Calculate the turbine work 2) As shown in figure, refrigerant R134a enters to a compressor. Write both mass and energy balance equations. Calculate the compressor work and the mass flow rate of refrigerant. 3) As shown in figure, the heat exchanger uses the heat of hot exhaust gases to produce steam. Where, 15% of heat is lost to the surroundings. Exhaust gases enters the heat exchanger at 500°C. Water enters at 15°C as saturated liquid and exit at saturated vapor at 2 MPa. Mass flow rate of water is 0.025 kg/s, and for exhaust gases, it is 0.42 kg/s. The specific heat for exhaust gases is 1.045 kJ/kg K, which can be treated as ideal gas. 1 Turbine 2 ? 1 = 1 ??/? ?1 = 1 ??? ?1 = 300 ℃ ?1 = 40 ?/? ? ??? =? ????? = 35 ??/?? ?2 = 150 ??? ?2 = 0.9 ?2 = 180 ?/? 1 Compressor 2 ???? ???? = 1.3 ?3/??? ?1 = 100 ??? ?1 = −20 ℃ ? ?? =? ? ???? = 3 ?? ?2 = 800 ??? ?2 = 60 ℃ 2 a) Write mass and energy balance equations. b) Calculate the rate of heat transfer to the water. c) Calculate the exhaust gases exit temperature. 4) As shown in figure, two refrigerant R134a streams mix in a mixing chamber. If the mass flow rate of cold stream is twice that of the hot stream. a) Write mass and energy balance equations. b) Calculate the temperature of the mixture at the exit of the mixing chamber c) Calculate the quality at the exit of the mixing chamber 5) As shown in figure, an air conditioning system requires airflow at the main supply duct at a rate of 140 m3/min. The velocity inside circular duct is not to exceed 9 m/s. Assume that the fan converts 85% of electrical energy it consumes into kinetic energy of air. a) Write mass and energy balance equations. b) Calculate the size of electric motor require to drive the fan c) Calculate the diameter of the main duct ?2 = 1 ??? ?2 = 90 ℃ ?1 = 1 ??? ?1 = 30 ℃ ?3 =? ?3 =? 140 ?3/??? 9 ?/? Air Fan

No expert has answered this question yet. You can browse … Read More...
Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

info@checkyourstudy.com