You are to create and administer a public opinion survey. • Step 1: choose a topic – person, issue, event, opinion, etc. • Step 2: write at least 10 questions asking for opinions on your chosen topic. Use a standard scale 1-10 (to show direction and intensity). Do not ask open-ended (what do you think/feel ) questions! • Step 3: poll a random sample (at least 10 individuals) of your target group (everyone, men/women, old/young, student, unemployed, etc.) • Step 4: Write a brief analysis of the actual survey you created and the results of your poll. (1-2 pages) Submit the analysis, an original copy of the survey, and all survey responses. You will be graded on the survey quality and analysis, NOT on the topic – issue or candidate. Please remember: o You cannot poll your classmates. You must find a random sample of other individuals. o Make sure your questions aren’t leading their opinion. o Consider the placement of your questions – is it leading as well? o In your analysis, think about the margin of error, the people who did/did not respond, the quality of questions, the situational factors, etc. o Use your book for assistance. o Additional websites to look for guidance (not copy/paste): www.polllingreport.com / www.gallup.com ***NOTE: You may work with a partner for this assignment. IF you choose to do so, you MUST increase to a minimum of 20 individuals surveyed.

You are to create and administer a public opinion survey. • Step 1: choose a topic – person, issue, event, opinion, etc. • Step 2: write at least 10 questions asking for opinions on your chosen topic. Use a standard scale 1-10 (to show direction and intensity). Do not ask open-ended (what do you think/feel ) questions! • Step 3: poll a random sample (at least 10 individuals) of your target group (everyone, men/women, old/young, student, unemployed, etc.) • Step 4: Write a brief analysis of the actual survey you created and the results of your poll. (1-2 pages) Submit the analysis, an original copy of the survey, and all survey responses. You will be graded on the survey quality and analysis, NOT on the topic – issue or candidate. Please remember: o You cannot poll your classmates. You must find a random sample of other individuals. o Make sure your questions aren’t leading their opinion. o Consider the placement of your questions – is it leading as well? o In your analysis, think about the margin of error, the people who did/did not respond, the quality of questions, the situational factors, etc. o Use your book for assistance. o Additional websites to look for guidance (not copy/paste): www.polllingreport.com / www.gallup.com ***NOTE: You may work with a partner for this assignment. IF you choose to do so, you MUST increase to a minimum of 20 individuals surveyed.

No expert has answered this question yet. You can browse … Read More...
Attached Files: File Operational Definitions for 670.doc (25.5 KB) Amply armed with all the information you have learned throughout these last 7 weeks (paying special attention to Chapters 11-14), complete a “mini public relations proposal.” Following is a checklist of what is expected in this proposal: 1. Name of the organization and a brief explanation/description (Example: it is a boutique that specializes in selling high-end bridal gowns; it is a nonprofit organization that raises money for children whose parents are wounded veterans, etc.) PLEASE NOTE: No fictitious organizations, please! 2. ONE Overaching Goal (to persuade, inform, educate, etc.) 3. ONE suggestion for the research you plan to conduct. Explain the method (survey, phone interviews, etc.), who you are researching, and why you think this method is most conducive for this communication campaign. 4. ONE behavioral objective (see handouts a) RECALL PLOT: public, level of obtainment, timeframe) b). RECALL that the objective is what you want your target public to do 5. ONE action strategy (RECALL that the strategy is what you are planning to do meet your objective – your gameplan) 6. ONE message strategy (what your message will say) 7. TWO communication tactics 8. ONE technique for measuring whether the objective was met IMPORTANT NOTES: > USE the prsa operational definitions (SEE ATTACHED HANDOUT) > USE subheads for each part of the proposal OR you can just number the components (1-8) > The rubric for this last report is very simple: points will be deducted for each component you do not include or if it is written incorrectly or does not meet all the critiera mapped out in the attached handout.

Attached Files: File Operational Definitions for 670.doc (25.5 KB) Amply armed with all the information you have learned throughout these last 7 weeks (paying special attention to Chapters 11-14), complete a “mini public relations proposal.” Following is a checklist of what is expected in this proposal: 1. Name of the organization and a brief explanation/description (Example: it is a boutique that specializes in selling high-end bridal gowns; it is a nonprofit organization that raises money for children whose parents are wounded veterans, etc.) PLEASE NOTE: No fictitious organizations, please! 2. ONE Overaching Goal (to persuade, inform, educate, etc.) 3. ONE suggestion for the research you plan to conduct. Explain the method (survey, phone interviews, etc.), who you are researching, and why you think this method is most conducive for this communication campaign. 4. ONE behavioral objective (see handouts a) RECALL PLOT: public, level of obtainment, timeframe) b). RECALL that the objective is what you want your target public to do 5. ONE action strategy (RECALL that the strategy is what you are planning to do meet your objective – your gameplan) 6. ONE message strategy (what your message will say) 7. TWO communication tactics 8. ONE technique for measuring whether the objective was met IMPORTANT NOTES: > USE the prsa operational definitions (SEE ATTACHED HANDOUT) > USE subheads for each part of the proposal OR you can just number the components (1-8) > The rubric for this last report is very simple: points will be deducted for each component you do not include or if it is written incorrectly or does not meet all the critiera mapped out in the attached handout.

info@checkyourstudy.com
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Public Communication Campaign Proposal Your public communication campaign proposal should be a minimum of 20 pages campaign proposal or project for a local or international organization. The proposal should address the following campaign design areas: 1. An introduction to your choice of organization 2. Background research about the topic or issue you are proposing the campaign for 3. Theoretical grounding for your campaign a. What theoretical foundation supports your campaign and what is the theory about? Define the theory b. Provide examples from the literature on how your choice of particular theory has been used. 4. Define the target audience and provide justification for your choice of audience 5. I d e n t i f y y o u r c hoice of medium/mediums and provide justification for your choice of medium/mediums and an explanation of how the medium/mediums will be used in the campaign 6. Choice of evaluation and explanation of how the campaign will be evaluated Students will propose campaign projects from the perspective of a consultant. Imagine yourself as consultant and in competition with other consultants to develop a public communication campaign for your topic/issue of choice. Students will be evaluated on the quality and cohesiveness of their public communication campaign proposals with focus on the different components required above.

Public Communication Campaign Proposal Your public communication campaign proposal should be a minimum of 20 pages campaign proposal or project for a local or international organization. The proposal should address the following campaign design areas: 1. An introduction to your choice of organization 2. Background research about the topic or issue you are proposing the campaign for 3. Theoretical grounding for your campaign a. What theoretical foundation supports your campaign and what is the theory about? Define the theory b. Provide examples from the literature on how your choice of particular theory has been used. 4. Define the target audience and provide justification for your choice of audience 5. I d e n t i f y y o u r c hoice of medium/mediums and provide justification for your choice of medium/mediums and an explanation of how the medium/mediums will be used in the campaign 6. Choice of evaluation and explanation of how the campaign will be evaluated Students will propose campaign projects from the perspective of a consultant. Imagine yourself as consultant and in competition with other consultants to develop a public communication campaign for your topic/issue of choice. Students will be evaluated on the quality and cohesiveness of their public communication campaign proposals with focus on the different components required above.

No expert has answered this question yet. You can browse … Read More...
ABC Corporation’s HRD department has a business meeting with the strategic planning committee to discuss succession planning. You have been asked to come up with a small-group discussion or activity related to career development. The entire meeting will focus on this topic and will begin with a presentation by the HRD Director, followed by a panel discussion, followed by this activity.

ABC Corporation’s HRD department has a business meeting with the strategic planning committee to discuss succession planning. You have been asked to come up with a small-group discussion or activity related to career development. The entire meeting will focus on this topic and will begin with a presentation by the HRD Director, followed by a panel discussion, followed by this activity.

OCCUPATION DEVELOPMENT ACTION PLAN addresses our individual and occupation growth … Read More...
Watch the videos, and then answer the questions below. http://www.youtube.com/watch?v=kt6SYhX_Ymo http://www.youtube.com/watch?v=ka3yTfmyjAw Building Justice Which of the following is true of the International Criminal Court (ICC)? A. It was the first court to try individuals for crimes against humanity. B. It was founded to prosecute Nazi war criminals. C. It is a permanent court with universal jurisdiction. D. It was created by a treaty that has been signed by all of the world’s nations. E. none of these options What distinguishes a “crime against humanity” from other kinds of crimes? A. Crimes against humanity involve government officials as perpetrators. B. Crimes against humanity target particular ethnic groups. C. Crimes against humanity are punishable by the death penalty. D. Crimes against humanity involve attacks on civilians. E. all of these options An important goal of the ICC is to eliminate “impunity” for crimes, which means eliminating which of the following? A. the ability of perpetrators to obtain the weapons they need to commit the crimes B. the expectation of perpetrators that they can commit crimes without being punished C. the expectation of perpetrators that they can evade arrest by national authorities D. the ability of perpetrators to get a court-appointed lawyer if they are arrested and tried E. the ability of perpetrators to cross national boundaries and escape extradition Supporting a Strong International Justice System Which of the following is NOT a part of the emerging international justice system? A. local courts B. national courts C. regional courts D. international Courts E. United Nations tribunals Which of the following represents one of the major challenges faced by the ICC? A. increasing awareness of its cause B. obtaining more funding from the United Nations C. securing greater state cooperation with its activities D. apprehending and prosecuting Germain Katanga E. getting the United States to join

Watch the videos, and then answer the questions below. http://www.youtube.com/watch?v=kt6SYhX_Ymo http://www.youtube.com/watch?v=ka3yTfmyjAw Building Justice Which of the following is true of the International Criminal Court (ICC)? A. It was the first court to try individuals for crimes against humanity. B. It was founded to prosecute Nazi war criminals. C. It is a permanent court with universal jurisdiction. D. It was created by a treaty that has been signed by all of the world’s nations. E. none of these options What distinguishes a “crime against humanity” from other kinds of crimes? A. Crimes against humanity involve government officials as perpetrators. B. Crimes against humanity target particular ethnic groups. C. Crimes against humanity are punishable by the death penalty. D. Crimes against humanity involve attacks on civilians. E. all of these options An important goal of the ICC is to eliminate “impunity” for crimes, which means eliminating which of the following? A. the ability of perpetrators to obtain the weapons they need to commit the crimes B. the expectation of perpetrators that they can commit crimes without being punished C. the expectation of perpetrators that they can evade arrest by national authorities D. the ability of perpetrators to get a court-appointed lawyer if they are arrested and tried E. the ability of perpetrators to cross national boundaries and escape extradition Supporting a Strong International Justice System Which of the following is NOT a part of the emerging international justice system? A. local courts B. national courts C. regional courts D. international Courts E. United Nations tribunals Which of the following represents one of the major challenges faced by the ICC? A. increasing awareness of its cause B. obtaining more funding from the United Nations C. securing greater state cooperation with its activities D. apprehending and prosecuting Germain Katanga E. getting the United States to join

Watch the videos, and then answer the questions below. http://www.youtube.com/watch?v=kt6SYhX_Ymo … Read More...
You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation

You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation

http://www.physicsclassroom.com/ http://www.usa.gov/ 1.                  Starting Point a.       Composition Matches Site Purpose … Read More...
Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

please email info@checkyourstudy.com
Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name:                                                                                                  Date: Quiz IV   Vignette 1.   Johnny … Read More...
Chapter 10 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A One-Dimensional Inelastic Collision Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 15.0 . It collides with block 2, of mass = 19.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: m1 kg v1 m/s m2 kg pi Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Part C What is the change in the two-block system’s kinetic energy due to the collision? Express your answer numerically in joules. You did not open hints for this part. ANSWER: pi = kg m/s vf vf = m/s K = Kfinal − Kinitial K = J Conservation of Energy Ranking Task Six pendulums of various masses are released from various heights above a tabletop, as shown in the figures below. All the pendulums have the same length and are mounted such that at the vertical position their lowest points are the height of the tabletop and just do not strike the tabletop when released. Assume that the size of each bob is negligible. Part A Rank each pendulum on the basis of its initial gravitational potential energy (before being released) relative to the tabletop. Rank from largest to smallest To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: m h Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Momentum and Kinetic Energy Consider two objects (Object 1 and Object 2) moving in the same direction on a frictionless surface. Object 1 moves with speed and has mass . Object 2 moves with speed and has mass . Part A Which object has the larger magnitude of its momentum? You did not open hints for this part. ANSWER: Part B Which object has the larger kinetic energy? You did not open hints for this part. ANSWER: v1 = v m1 = 2m v2 = 2v m2 = m Object 1 has the greater magnitude of its momentum. Object 2 has the greater magnitude of its momentum. Both objects have the same magnitude of their momenta. Object 1 has the greater kinetic energy. Object 2 has the greater kinetic energy. The objects have the same kinetic energy. Projectile Motion and Conservation of Energy Ranking Task Part A Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: H PSS 10.1 Conservation of Mechanical Energy Learning Goal: To practice Problem-Solving Strategy 10.1 for conservation of mechanical energy problems. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 that makes an angle of 45 with the vertical, steps off his tree limb, and swings down and then up to Jane’s open arms. When he arrives, his vine makes an angle of 30 with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan’s speed just before he reaches Jane. You can ignore air resistance and the mass of the vine. PROBLEM-SOLVING STRATEGY 10.1 Conservation of mechanical energy MODEL: Choose a system without friction or other losses of mechanical energy. m   VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you’re trying to find. SOLVE: The mathematical representation is based on the law of conservation of mechanical energy: . ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The problem does not involve friction, nor are there losses of mechanical energy, so conservation of mechanical energy applies. Model Tarzan and the vine as a pendulum. Visualize Part A Which of the following sketches can be used in drawing a before-and-after pictorial representation? ANSWER: Kf + Uf = Ki + Ui Solve Part B What is Tarzan’s speed just before he reaches Jane? Express your answer in meters per second to two significant figures. You did not open hints for this part. ANSWER: Assess Part C This question will be shown after you complete previous question(s). Bungee Jumping Diagram A Diagram B Diagram C Diagram D vf vf = m/s Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass , and the surface of the bridge is a height above the water. The bungee cord, which has length when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant . Kate doesn’t actually jump but simply steps off the edge of the bridge and falls straight downward. Kate’s height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use for the magnitude of the acceleration due to gravity. Part A How far below the bridge will Kate eventually be hanging, once she stops oscillating and comes finally to rest? Assume that she doesn’t touch the water. Express the distance in terms of quantities given in the problem introduction. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Spinning Mass on a Spring An object of mass is attached to a spring with spring constant whose unstretched length is , and whose far end is fixed to a shaft that is rotating with angular speed . Neglect gravity and assume that the mass rotates with angular speed as shown. When solving this problem use an inertial coordinate system, as drawn here. m h L k g d = M k L Part A Given the angular speed , find the radius at which the mass rotates without moving toward or away from the origin. Express the radius in terms of , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C R( ) k L M R( ) = This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). ± Baby Bounce with a Hooke One of the pioneers of modern science, Sir Robert Hooke (1635-1703), studied the elastic properties of springs and formulated the law that bears his name. Hooke found the relationship among the force a spring exerts, , the distance from equilibrium the end of the spring is displaced, , and a number called the spring constant (or, sometimes, the force constant of the spring). According to Hooke, the force of the spring is directly proportional to its displacement from equilibrium, or . In its scalar form, this equation is simply . The negative sign indicates that the force that the spring exerts and its displacement have opposite directions. The value of depends on the geometry and the material of the spring; it can be easily determined experimentally using this scalar equation. Toy makers have always been interested in springs for the entertainment value of the motion they produce. One well-known application is a baby bouncer,which consists of a harness seat for a toddler, attached to a spring. The entire contraption hooks onto the top of a doorway. The idea is for the baby to hang in the seat with his or her feet just touching the ground so that a good push up will get the baby bouncing, providing potentially hours of entertainment. F  x k F = −kx F = −kx k Part A The following chart and accompanying graph depict an experiment to determine the spring constant for a baby bouncer. Displacement from equilibrium, ( ) Force exerted on the spring, ( ) 0 0 0.005 2.5 0.010 5.0 0.015 7.5 0.020 10 What is the spring constant of the spring being tested for the baby bouncer? Express your answer to two significant figures in newtons per meter. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Shooting a ball into a box Two children are trying to shoot a marble of mass into a small box using a spring-loaded gun that is fixed on a table and shoots horizontally from the edge of the table. The edge of the table is a height above the top of the box (the height of which is negligibly small), and the center of the box is a distance from the edge of the table. x m F N k k = N/m m H d The spring has a spring constant . The first child compresses the spring a distance and finds that the marble falls short of its target by a horizontal distance . Part A By what distance, , should the second child compress the spring so that the marble lands in the middle of the box? (Assume that height of the box is negligible, so that there is no chance that the marble will hit the side of the box before it lands in the bottom.) Express the distance in terms of , , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). k x1 d12 x2 m k g H d x2 = Elastic Collision in One Dimension Block 1, of mass , moves across a frictionless surface with speed . It collides elastically with block 2, of mass , which is at rest ( ). After the collision, block 1 moves with speed , while block 2 moves with speed . Assume that , so that after the collision, the two objects move off in the direction of the first object before the collision. Part A This collision is elastic. What quantities, if any, are conserved in this collision? You did not open hints for this part. ANSWER: Part B What is the final speed of block 1? m1 ui m2 vi = 0 uf vf m1 > m2 kinetic energy only momentum only kinetic energy and momentum uf Express in terms of , , and . You did not open hints for this part. ANSWER: Part C What is the final speed of block 2? Express in terms of , , and . You did not open hints for this part. ANSWER: Ballistic Pendulum In a ballistic pendulum an object of mass is fired with an initial speed at a pendulum bob. The bob has a mass , which is suspended by a rod of length and negligible mass. After the collision, the pendulum and object stick together and swing to a maximum angular displacement as shown . uf m1 m2 ui uf = vf vf m1 m2 ui vf = m v0 M L  Part A Find an expression for , the initial speed of the fired object. Express your answer in terms of some or all of the variables , , , and and the acceleration due to gravity, . You did not open hints for this part. ANSWER: Part B An experiment is done to compare the initial speed of bullets fired from different handguns: a 9.0 and a .44 caliber. The guns are fired into a 10- pendulum bob of length . Assume that the 9.0- bullet has a mass of 6.0 and the .44-caliber bullet has a mass of 12 . If the 9.0- bullet causes the pendulum to swing to a maximum angular displacement of 4.3 and the .44-caliber bullet causes a displacement of 10.1 , find the ratio of the initial speed of the 9.0- bullet to the speed of the .44-caliber bullet, . Express your answer numerically. You did not open hints for this part. ANSWER: v0 m M L  g v0 = mm kg L mm g g mm   mm (v /( 0 )9.0 v0)44 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. (v0 )9.0/(v0 )44 =

Chapter 10 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A One-Dimensional Inelastic Collision Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 15.0 . It collides with block 2, of mass = 19.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: m1 kg v1 m/s m2 kg pi Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Part C What is the change in the two-block system’s kinetic energy due to the collision? Express your answer numerically in joules. You did not open hints for this part. ANSWER: pi = kg m/s vf vf = m/s K = Kfinal − Kinitial K = J Conservation of Energy Ranking Task Six pendulums of various masses are released from various heights above a tabletop, as shown in the figures below. All the pendulums have the same length and are mounted such that at the vertical position their lowest points are the height of the tabletop and just do not strike the tabletop when released. Assume that the size of each bob is negligible. Part A Rank each pendulum on the basis of its initial gravitational potential energy (before being released) relative to the tabletop. Rank from largest to smallest To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: m h Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Momentum and Kinetic Energy Consider two objects (Object 1 and Object 2) moving in the same direction on a frictionless surface. Object 1 moves with speed and has mass . Object 2 moves with speed and has mass . Part A Which object has the larger magnitude of its momentum? You did not open hints for this part. ANSWER: Part B Which object has the larger kinetic energy? You did not open hints for this part. ANSWER: v1 = v m1 = 2m v2 = 2v m2 = m Object 1 has the greater magnitude of its momentum. Object 2 has the greater magnitude of its momentum. Both objects have the same magnitude of their momenta. Object 1 has the greater kinetic energy. Object 2 has the greater kinetic energy. The objects have the same kinetic energy. Projectile Motion and Conservation of Energy Ranking Task Part A Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: H PSS 10.1 Conservation of Mechanical Energy Learning Goal: To practice Problem-Solving Strategy 10.1 for conservation of mechanical energy problems. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 that makes an angle of 45 with the vertical, steps off his tree limb, and swings down and then up to Jane’s open arms. When he arrives, his vine makes an angle of 30 with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan’s speed just before he reaches Jane. You can ignore air resistance and the mass of the vine. PROBLEM-SOLVING STRATEGY 10.1 Conservation of mechanical energy MODEL: Choose a system without friction or other losses of mechanical energy. m   VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you’re trying to find. SOLVE: The mathematical representation is based on the law of conservation of mechanical energy: . ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The problem does not involve friction, nor are there losses of mechanical energy, so conservation of mechanical energy applies. Model Tarzan and the vine as a pendulum. Visualize Part A Which of the following sketches can be used in drawing a before-and-after pictorial representation? ANSWER: Kf + Uf = Ki + Ui Solve Part B What is Tarzan’s speed just before he reaches Jane? Express your answer in meters per second to two significant figures. You did not open hints for this part. ANSWER: Assess Part C This question will be shown after you complete previous question(s). Bungee Jumping Diagram A Diagram B Diagram C Diagram D vf vf = m/s Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass , and the surface of the bridge is a height above the water. The bungee cord, which has length when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant . Kate doesn’t actually jump but simply steps off the edge of the bridge and falls straight downward. Kate’s height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use for the magnitude of the acceleration due to gravity. Part A How far below the bridge will Kate eventually be hanging, once she stops oscillating and comes finally to rest? Assume that she doesn’t touch the water. Express the distance in terms of quantities given in the problem introduction. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Spinning Mass on a Spring An object of mass is attached to a spring with spring constant whose unstretched length is , and whose far end is fixed to a shaft that is rotating with angular speed . Neglect gravity and assume that the mass rotates with angular speed as shown. When solving this problem use an inertial coordinate system, as drawn here. m h L k g d = M k L Part A Given the angular speed , find the radius at which the mass rotates without moving toward or away from the origin. Express the radius in terms of , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C R( ) k L M R( ) = This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). ± Baby Bounce with a Hooke One of the pioneers of modern science, Sir Robert Hooke (1635-1703), studied the elastic properties of springs and formulated the law that bears his name. Hooke found the relationship among the force a spring exerts, , the distance from equilibrium the end of the spring is displaced, , and a number called the spring constant (or, sometimes, the force constant of the spring). According to Hooke, the force of the spring is directly proportional to its displacement from equilibrium, or . In its scalar form, this equation is simply . The negative sign indicates that the force that the spring exerts and its displacement have opposite directions. The value of depends on the geometry and the material of the spring; it can be easily determined experimentally using this scalar equation. Toy makers have always been interested in springs for the entertainment value of the motion they produce. One well-known application is a baby bouncer,which consists of a harness seat for a toddler, attached to a spring. The entire contraption hooks onto the top of a doorway. The idea is for the baby to hang in the seat with his or her feet just touching the ground so that a good push up will get the baby bouncing, providing potentially hours of entertainment. F  x k F = −kx F = −kx k Part A The following chart and accompanying graph depict an experiment to determine the spring constant for a baby bouncer. Displacement from equilibrium, ( ) Force exerted on the spring, ( ) 0 0 0.005 2.5 0.010 5.0 0.015 7.5 0.020 10 What is the spring constant of the spring being tested for the baby bouncer? Express your answer to two significant figures in newtons per meter. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Shooting a ball into a box Two children are trying to shoot a marble of mass into a small box using a spring-loaded gun that is fixed on a table and shoots horizontally from the edge of the table. The edge of the table is a height above the top of the box (the height of which is negligibly small), and the center of the box is a distance from the edge of the table. x m F N k k = N/m m H d The spring has a spring constant . The first child compresses the spring a distance and finds that the marble falls short of its target by a horizontal distance . Part A By what distance, , should the second child compress the spring so that the marble lands in the middle of the box? (Assume that height of the box is negligible, so that there is no chance that the marble will hit the side of the box before it lands in the bottom.) Express the distance in terms of , , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). k x1 d12 x2 m k g H d x2 = Elastic Collision in One Dimension Block 1, of mass , moves across a frictionless surface with speed . It collides elastically with block 2, of mass , which is at rest ( ). After the collision, block 1 moves with speed , while block 2 moves with speed . Assume that , so that after the collision, the two objects move off in the direction of the first object before the collision. Part A This collision is elastic. What quantities, if any, are conserved in this collision? You did not open hints for this part. ANSWER: Part B What is the final speed of block 1? m1 ui m2 vi = 0 uf vf m1 > m2 kinetic energy only momentum only kinetic energy and momentum uf Express in terms of , , and . You did not open hints for this part. ANSWER: Part C What is the final speed of block 2? Express in terms of , , and . You did not open hints for this part. ANSWER: Ballistic Pendulum In a ballistic pendulum an object of mass is fired with an initial speed at a pendulum bob. The bob has a mass , which is suspended by a rod of length and negligible mass. After the collision, the pendulum and object stick together and swing to a maximum angular displacement as shown . uf m1 m2 ui uf = vf vf m1 m2 ui vf = m v0 M L  Part A Find an expression for , the initial speed of the fired object. Express your answer in terms of some or all of the variables , , , and and the acceleration due to gravity, . You did not open hints for this part. ANSWER: Part B An experiment is done to compare the initial speed of bullets fired from different handguns: a 9.0 and a .44 caliber. The guns are fired into a 10- pendulum bob of length . Assume that the 9.0- bullet has a mass of 6.0 and the .44-caliber bullet has a mass of 12 . If the 9.0- bullet causes the pendulum to swing to a maximum angular displacement of 4.3 and the .44-caliber bullet causes a displacement of 10.1 , find the ratio of the initial speed of the 9.0- bullet to the speed of the .44-caliber bullet, . Express your answer numerically. You did not open hints for this part. ANSWER: v0 m M L  g v0 = mm kg L mm g g mm   mm (v /( 0 )9.0 v0)44 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. (v0 )9.0/(v0 )44 =

please email info@checkyourstudy.com