Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
Describe and discuss: how your study of special education has informed your professional identity

Describe and discuss: how your study of special education has informed your professional identity

The force on culture variety and linguistic diversity in special … Read More...
Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

info@checkyourstudy.com Lab #02 Relationship between distance & illumination As engineers, … Read More...
Critical Thinking: Comprehensive Sexual Education versus Abstinence-Only The Bush Administration spent over 175 million dollars annually on abstinence-only sex education programs. These programs could only discuss the failure rates of other methods, nothing more (Ott and Santelli, 2007). Comprehensive programs educate students on a range of contraceptive options – including abstinence. Two separate studies now indicate that comprehensive programs delay the start of sexual activity and cut teen pregnancy when compared to abstinence-only education programs (Ott and Santelli, 2007; Center for the Advancement of Health, 2008). Research this topic and use the newly learned information to support your opinions. Use reliable scientific resources such as scientific research-based articles; or relevant web sites such as .gov, .edu, .org. When looking at the issues surrounding sex education, you can consider ethical arguments for or against how society should deal with the possibilities, but refrain from religious comments on this issue (or any other one) in this science course. When using ideas from a web site or the text book, you must include page numbers in the citation for your reference at the end of your post. In ~ 300 to 350 words, answer the following questions: 1. What program should school children be taught? 2. Why?

Critical Thinking: Comprehensive Sexual Education versus Abstinence-Only The Bush Administration spent over 175 million dollars annually on abstinence-only sex education programs. These programs could only discuss the failure rates of other methods, nothing more (Ott and Santelli, 2007). Comprehensive programs educate students on a range of contraceptive options – including abstinence. Two separate studies now indicate that comprehensive programs delay the start of sexual activity and cut teen pregnancy when compared to abstinence-only education programs (Ott and Santelli, 2007; Center for the Advancement of Health, 2008). Research this topic and use the newly learned information to support your opinions. Use reliable scientific resources such as scientific research-based articles; or relevant web sites such as .gov, .edu, .org. When looking at the issues surrounding sex education, you can consider ethical arguments for or against how society should deal with the possibilities, but refrain from religious comments on this issue (or any other one) in this science course. When using ideas from a web site or the text book, you must include page numbers in the citation for your reference at the end of your post. In ~ 300 to 350 words, answer the following questions: 1. What program should school children be taught? 2. Why?

No expert has answered this question yet. You can browse … Read More...
unit 6 only Part 1: Analysis of a unit of work (1000-1500) Part 1 requires you to critically evaluate a unit of work given in terms of: • the range of approaches and methodologies to language learning and teaching this unit of work encompasses. Discuss whether there is a focus on a particular approach, eg, are the students asked to memorise / rote learn/ repeat (audio-lingual); are students required to complete a task (task based learning) or an information-gap type activity (communicative language learning); is there a focus on a specific genre? 300 – 400 • the clarity of the objectives and target language/ exponents being taught 200-300 • the selection and sequencing of the activities 200 – 300 • to what extent language exponents and skills are integrated in the activities 200 -300 • the learner group, their needs and their language level for which the unit of work would be most appropriate 100 Describe the learner group this unit is designed for: ESL students, students of English as an international language etc; what language level the unit assumes and; the students language learning needs. Part 2: Extension, addition, omission and substitution (1500 – 2000) This section of the assignment requires you to focus on the unit of work: • Comment on any extensions, additions, omissions or substitutions you would make if you were teaching this unit to the learner group you identified in Part 1, above. 500 • Give reasons for your decisions. 500 • Describe how you will assess student learning. 300 • Describe how you will evaluate the success of the unit of work. 200 • Identify any problems you anticipate in carrying out the unit of work and suggest how you would go about overcoming these. 300 • For added or substituted activities, list the resources you will need for these, and reference the materials you have used or drawn on. 200

unit 6 only Part 1: Analysis of a unit of work (1000-1500) Part 1 requires you to critically evaluate a unit of work given in terms of: • the range of approaches and methodologies to language learning and teaching this unit of work encompasses. Discuss whether there is a focus on a particular approach, eg, are the students asked to memorise / rote learn/ repeat (audio-lingual); are students required to complete a task (task based learning) or an information-gap type activity (communicative language learning); is there a focus on a specific genre? 300 – 400 • the clarity of the objectives and target language/ exponents being taught 200-300 • the selection and sequencing of the activities 200 – 300 • to what extent language exponents and skills are integrated in the activities 200 -300 • the learner group, their needs and their language level for which the unit of work would be most appropriate 100 Describe the learner group this unit is designed for: ESL students, students of English as an international language etc; what language level the unit assumes and; the students language learning needs. Part 2: Extension, addition, omission and substitution (1500 – 2000) This section of the assignment requires you to focus on the unit of work: • Comment on any extensions, additions, omissions or substitutions you would make if you were teaching this unit to the learner group you identified in Part 1, above. 500 • Give reasons for your decisions. 500 • Describe how you will assess student learning. 300 • Describe how you will evaluate the success of the unit of work. 200 • Identify any problems you anticipate in carrying out the unit of work and suggest how you would go about overcoming these. 300 • For added or substituted activities, list the resources you will need for these, and reference the materials you have used or drawn on. 200

info@checkyourstudy.com
Read the Wall Street Journal, The Economist, or any other major newspaper or weekly publication and select a single article or articles that (1) either report on interesting economic news that can be analyzed by the concepts or models taught in this course and/or (2) discusses one or more economic issues related to the concepts or models taught in this course. It is OK to use an online economics news article. Please cite your source. Useful Link: http://www.smc.edu/AcademicAffairs/Library/Pages/Citation-Style-Guidelines.aspx Write a FIVE TO SIX page essay analyzing the topic or critique the article from economic perspectives. Essay must be typed and double-spaced, (Times New Roman, font 12). The questions that you may address in this essay may include, but are not limited, to the following:
 What is the main economic issue? How is the economic issue related to the concepts or models that you have learned from this course? What sorts of arguments/opinions have been discussed? Do you agree or disagree with the analyses/opinions? Why? What argument would you, as an economist, make? The following is a suggested list of topics. This list is not exhaustive. INDUSTRY STUDY. For a specific industry, choose a current issue such as deregulation, foreign competition, and the impact of new technologies, mergers/takeovers, changing methods of competition, labor problems, or financial changes. COMPANY STUDY. Study the recent growth or decline of a particular company or its current position. This topic might include such points as the market structure within which the company grew and now operates, the elasticity of demand for its products, the degree of unionization, the cost structure (degree of fixed cost, economies of scale), the role of advertising, the degree of international competition, etc. INTERNATIONAL ISSUES. Possible topics are: current economic problems of a particular country, OPEC, the European Union, the U. S. trade deficit, protectionism, U. S. trade relations with Japan or other countries, economic development of a particular country, the World Trade Organization, etc. GOVERNMENT REGULATION. Analyze some particular government regulation or antitrust policy relative to a specific industry or company or analyze a current regulatory issue (environmental protection, OSHA, the FDA, etc.).

Read the Wall Street Journal, The Economist, or any other major newspaper or weekly publication and select a single article or articles that (1) either report on interesting economic news that can be analyzed by the concepts or models taught in this course and/or (2) discusses one or more economic issues related to the concepts or models taught in this course. It is OK to use an online economics news article. Please cite your source. Useful Link: http://www.smc.edu/AcademicAffairs/Library/Pages/Citation-Style-Guidelines.aspx Write a FIVE TO SIX page essay analyzing the topic or critique the article from economic perspectives. Essay must be typed and double-spaced, (Times New Roman, font 12). The questions that you may address in this essay may include, but are not limited, to the following:
 What is the main economic issue? How is the economic issue related to the concepts or models that you have learned from this course? What sorts of arguments/opinions have been discussed? Do you agree or disagree with the analyses/opinions? Why? What argument would you, as an economist, make? The following is a suggested list of topics. This list is not exhaustive. INDUSTRY STUDY. For a specific industry, choose a current issue such as deregulation, foreign competition, and the impact of new technologies, mergers/takeovers, changing methods of competition, labor problems, or financial changes. COMPANY STUDY. Study the recent growth or decline of a particular company or its current position. This topic might include such points as the market structure within which the company grew and now operates, the elasticity of demand for its products, the degree of unionization, the cost structure (degree of fixed cost, economies of scale), the role of advertising, the degree of international competition, etc. INTERNATIONAL ISSUES. Possible topics are: current economic problems of a particular country, OPEC, the European Union, the U. S. trade deficit, protectionism, U. S. trade relations with Japan or other countries, economic development of a particular country, the World Trade Organization, etc. GOVERNMENT REGULATION. Analyze some particular government regulation or antitrust policy relative to a specific industry or company or analyze a current regulatory issue (environmental protection, OSHA, the FDA, etc.).

Introduction UnitedHealth Group Incorporated is dedicated to introduce pioneering ideas, … Read More...
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...