Computer/information Security Q1. Identify legislative and regulative requirements relative to information security for a bank

Computer/information Security Q1. Identify legislative and regulative requirements relative to information security for a bank

Computer/information Security     Q1. Identify legislative and regulative requirements relative to … Read More...
My Success Assignment ‘where you want to be in ten years’ Objective Make a plan and try to see all the details. Does some research, ask questions, and consider what it’s going to take to get where you want to be.

My Success Assignment ‘where you want to be in ten years’ Objective Make a plan and try to see all the details. Does some research, ask questions, and consider what it’s going to take to get where you want to be.

  My Road map for career planning is based on … Read More...
Read: http://xnet.kp.org/permanentejournal/winter03/leader.html This article talks about physicians as leaders. It is written by a physician for physicians, so it provides insight into how doctors think of themselves in leadership. How can you use this understanding of doctors and leadership in managing your own healthcare facility? After all, the organizational chart shows the board of directors and CEO at the top, but physicians are just as important in leading any hospital or clinic. How will you integrate physicians as leaders in your own organization?

Read: http://xnet.kp.org/permanentejournal/winter03/leader.html This article talks about physicians as leaders. It is written by a physician for physicians, so it provides insight into how doctors think of themselves in leadership. How can you use this understanding of doctors and leadership in managing your own healthcare facility? After all, the organizational chart shows the board of directors and CEO at the top, but physicians are just as important in leading any hospital or clinic. How will you integrate physicians as leaders in your own organization?

The physicians always take a lead in creating patient-cantered care. … Read More...
Identify legislative and regulative requirements relative to information security for a bank

Identify legislative and regulative requirements relative to information security for a bank

A number of federal laws directly control the collection and … Read More...
High-stakes testing has become common in the United States and in many other countries. Do you think this has improved education, and why or why not?

High-stakes testing has become common in the United States and in many other countries. Do you think this has improved education, and why or why not?

I don’t think, high-stakes testing is helping. This issue in … Read More...
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Current balance Objectives When a steady electric current flows perpendicularly across a uniform magnetic field it experiences a force. This experiment aims to investigate this effect, and to determine the direction of the force relative to the current and magnetic field. You will design and perform a series of experiments to show how the magnitude of the force depends upon the current and the length of the conductor that is in the field. Task You are provided with a current balance apparatus (Figure 1), power supply and a magnet. This current balance consists of five loops of conducting wire supported on a pivoted aluminium frame. Current may be made to flow in one or up to five of the loops at a time in either direction. If the end of the loop is situated in a perpendicular magnetic field, when the current is switched on, the magnetic force on the current will unbalance the apparatus. By moving the sliding weights to rebalance it, the magnitude of this magnetic force may be measured. A scale is etched on one arm of the balance, so that the distance moved by the slider can be measured. The circuitry of the balance cannot cope currents greater than 5 Amps, so please do not exceed this level of current. Figure 1: Schematic diagram of current balance apparatus and circuitry. Start by familiarising yourself with the apparatus. Use the two sliding weights to balance the apparatus, then apply a magnetic field to either end of the loop. Pass a current through just one of the conducting loops and observe the direction of the resulting magnetic force, relative to the direction of the current and the applied field. Change the magnitude and direction of the current, observe qualitatively the effect this has on the magnetic force. Having familiarised yourself with the apparatus, you should design and perform a series of quantitative experiments aiming to: (1) determine how the size of the magnetic force is dependant on the size of the current flowing in the conductor. (2) determine how the size of the force is dependant on the length of the conductor which is in the field. (3) measure the value (in Tesla) of the field of the magnet provided. For each of these, the balance should be set up with the magnet positioned at the end of the arm that has the distance scale, and orientated so that the magnetic force will be directed upwards when a current is passed through the conductor. The sliding weight on this arm should be positioned at the zero-mark. The weight on the opposite arm should be adjusted to balance the apparatus in the absence of a current. When a current is applied, you should re-balance the apparatus by moving the weight on the scaled arm outwards, while keeping the opposite weight fixed in position. The distance moved by the weight is directly proportional to the force applied by the magnetic field to the end of the balance. In your report, make sure you discuss why this is the case. Use the position of the sliding weight to quantify the magnetic force as a function of the current applied to the conductor, and of the number of conducting loops through which the current flows. For tasks (1) and (2) you can use the position of the sliding weight as a measure of the force. Look up the relationship that relates the force to the applied field, current and length of conductor in the field. Is this consistent with your data? To complete task (3) you need to determine the magnitude (in Newtons) of the magnetic force from the measurement of the position of the sliding weight. To do this, what other information do you need to know? When you have determined a value for the field, you can measure the field directly using the laboratory’s Gaussmeter for comparison.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Current balance Objectives When a steady electric current flows perpendicularly across a uniform magnetic field it experiences a force. This experiment aims to investigate this effect, and to determine the direction of the force relative to the current and magnetic field. You will design and perform a series of experiments to show how the magnitude of the force depends upon the current and the length of the conductor that is in the field. Task You are provided with a current balance apparatus (Figure 1), power supply and a magnet. This current balance consists of five loops of conducting wire supported on a pivoted aluminium frame. Current may be made to flow in one or up to five of the loops at a time in either direction. If the end of the loop is situated in a perpendicular magnetic field, when the current is switched on, the magnetic force on the current will unbalance the apparatus. By moving the sliding weights to rebalance it, the magnitude of this magnetic force may be measured. A scale is etched on one arm of the balance, so that the distance moved by the slider can be measured. The circuitry of the balance cannot cope currents greater than 5 Amps, so please do not exceed this level of current. Figure 1: Schematic diagram of current balance apparatus and circuitry. Start by familiarising yourself with the apparatus. Use the two sliding weights to balance the apparatus, then apply a magnetic field to either end of the loop. Pass a current through just one of the conducting loops and observe the direction of the resulting magnetic force, relative to the direction of the current and the applied field. Change the magnitude and direction of the current, observe qualitatively the effect this has on the magnetic force. Having familiarised yourself with the apparatus, you should design and perform a series of quantitative experiments aiming to: (1) determine how the size of the magnetic force is dependant on the size of the current flowing in the conductor. (2) determine how the size of the force is dependant on the length of the conductor which is in the field. (3) measure the value (in Tesla) of the field of the magnet provided. For each of these, the balance should be set up with the magnet positioned at the end of the arm that has the distance scale, and orientated so that the magnetic force will be directed upwards when a current is passed through the conductor. The sliding weight on this arm should be positioned at the zero-mark. The weight on the opposite arm should be adjusted to balance the apparatus in the absence of a current. When a current is applied, you should re-balance the apparatus by moving the weight on the scaled arm outwards, while keeping the opposite weight fixed in position. The distance moved by the weight is directly proportional to the force applied by the magnetic field to the end of the balance. In your report, make sure you discuss why this is the case. Use the position of the sliding weight to quantify the magnetic force as a function of the current applied to the conductor, and of the number of conducting loops through which the current flows. For tasks (1) and (2) you can use the position of the sliding weight as a measure of the force. Look up the relationship that relates the force to the applied field, current and length of conductor in the field. Is this consistent with your data? To complete task (3) you need to determine the magnitude (in Newtons) of the magnetic force from the measurement of the position of the sliding weight. To do this, what other information do you need to know? When you have determined a value for the field, you can measure the field directly using the laboratory’s Gaussmeter for comparison.

Abstract   The present experiment aims to investigate the effect … Read More...
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Top of Form Abstract.     Faraday Effect or Faraday … Read More...
Essay – Athlete’s high salaries. Should they be paid that amount or not?

Essay – Athlete’s high salaries. Should they be paid that amount or not?

Athlete’s high salaries: Should they be paid that amount or … Read More...
Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
ABC Corporation’s HRD department has a business meeting with the strategic planning committee to discuss succession planning. You have been asked to come up with a small-group discussion or activity related to career development. The entire meeting will focus on this topic and will begin with a presentation by the HRD Director, followed by a panel discussion, followed by this activity.

ABC Corporation’s HRD department has a business meeting with the strategic planning committee to discuss succession planning. You have been asked to come up with a small-group discussion or activity related to career development. The entire meeting will focus on this topic and will begin with a presentation by the HRD Director, followed by a panel discussion, followed by this activity.

OCCUPATION DEVELOPMENT ACTION PLAN addresses our individual and occupation growth … Read More...