2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

Studies are at the present extrapolative huge employment income in … Read More...
. What behaviors indicate psychological distress? Name 5 and explain.

. What behaviors indicate psychological distress? Name 5 and explain.

The term ‘distress’ is commonly used in nursing literature to … Read More...
Describe at least two strategies that a companies can use to overcome the challenges associated with transportation infrastructure congestion.

Describe at least two strategies that a companies can use to overcome the challenges associated with transportation infrastructure congestion.

Transportation and inventory economics are serious network design deliberations. In … Read More...
Describe the Maxwell model with the aid of sketches. What are its strengths and limitations?

Describe the Maxwell model with the aid of sketches. What are its strengths and limitations?

Maxwell Model             In the Maxwell model, the material is … Read More...
2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

info@checkyourstudy.com 2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm … Read More...
Project Four: Revisiting English 1010 (Literacy, Language, and Culture: An Exploration of the African American Experience) The MultiMedia Reflective Portfolio Project Overview This project will provide us with the opportunity to use a combination of textual, digital, and oral tools to: 1) reflect on and display what we have learned about African American literacy, language, and culture; and 2) reflect on and display what we have learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project. Ultimately, this project will provide us with the opportunity to use multimedia tools and applications to reflect on and display our experience as knowledge users and knowledge makers in this course (specifically as it relates to the English 1010 Learning Outcomes). ___________________________________________________________________ Introduction/Rationale/Assignment Prompt: This reflective assignment, which is the last major assignment of the semester, consists of two parts: Part One Part One consists of a 2-3 page reflective essay in which you reflect on and display: (1) what you learned about African American literacy, language, and culture; and (2) what you learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project–specifically as the process relates to the Learning Outcomes (Reading, Writing, Reflection, and Technology Use). To do so, you must look back over the work you produced during the semester in order to locate and discuss your learning and accomplishments in these areas. While your discussion of achievements with respect to ENG 1010 Learning Outcomes is perhaps the most important goal in the Reflective Essay, the written expression of these achievements can be strengthened when it is integrated into a broader narrative that describes where you are coming from and who you are as a student. In this narrative, you may discuss, for example, how you learned and used various reading strategies in the course, or you may describe, for example, how your ability to use composition and course management technologies, like Word and Blackboard, increased. You may also address, as appropriate, how your culture, identity, or background shaped your experiences as a student in ENG 1010. You may wish to discuss, for example, some of the following issues. • Transition to college and the larger first-year experience • Negotiation of a new identity as college student (how you adjusted; how you handled it) • Membership in groups historically underrepresented in college • Language diversity • Managing life circumstances to be able to give enough time and energy to academic work In sum, the Reflective Essay should make claims about your learning and accomplishments with respect to the two areas identified above. Essentially, the reflective essay should demonstrate what you have learned and what you can do as a result of your work in ENG 1010. In this way, a successful Reflective Essay will inspire confidence that you are prepared to move forward into your next composition courses, beginning with ENG 1020, and into the larger academic discourse community. Part Two Part Two consists of an electronic multimedia portfolio containing 3-5 selected pieces of the work you produced this semester (essay topic proposals, reading responses, essay outlines, essay first or final drafts, in-class assignments, etc.) that you can use as evidence of your learning and accomplishments and to support the claims you made in your reflective essay. ___________________________________________________________________ English 1010 Learning Outcomes Reading ● Develop reading strategies to explain, paraphrase, and summarize college-level material. ● Analyze college-level material to identify evidence that supports broader claims. Writing ● Plan and compose a well-organized thesis-driven text that engages with college-level material and is supported by relevant and sufficient evidence. ● Develop a flexible revision process that incorporates feedback to rewrite multiple drafts of a text for clarity (e.g. argument, organization, support, and audience awareness). Reflection ● Use reflective writing to evaluate and revise writing processes and drafts ● Use reflective writing to assess and articulate skill development in relation to course learning outcomes. Technology Use ● Navigate institutional web-based interfaces, such as course websites, university email, and Blackboard Learn™, to find, access and submit course material. ● Use computer-based composition technologies, including word processing software (e.g. Microsoft Word, PowerPoint), to compose college-level texts. ● Use computer-based composition technologies to read and annotate course readings and texts authored by students (e.g. peer review). Your Final Draft Should: • meet the requirements as outlined in the “Introduction/Rationale/Assignment Prompt” section above. Points for This Project • First Draft: 20 Points • Final Draft: 130 Points • Oral Presentation: 30 Points Refer to the Course Schedule (Syllabus) for Assignment Due Dates. _______________________________________________________________ Evaluation: You will be evaluated based on content, organization, and mechanics.

Project Four: Revisiting English 1010 (Literacy, Language, and Culture: An Exploration of the African American Experience) The MultiMedia Reflective Portfolio Project Overview This project will provide us with the opportunity to use a combination of textual, digital, and oral tools to: 1) reflect on and display what we have learned about African American literacy, language, and culture; and 2) reflect on and display what we have learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project. Ultimately, this project will provide us with the opportunity to use multimedia tools and applications to reflect on and display our experience as knowledge users and knowledge makers in this course (specifically as it relates to the English 1010 Learning Outcomes). ___________________________________________________________________ Introduction/Rationale/Assignment Prompt: This reflective assignment, which is the last major assignment of the semester, consists of two parts: Part One Part One consists of a 2-3 page reflective essay in which you reflect on and display: (1) what you learned about African American literacy, language, and culture; and (2) what you learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project–specifically as the process relates to the Learning Outcomes (Reading, Writing, Reflection, and Technology Use). To do so, you must look back over the work you produced during the semester in order to locate and discuss your learning and accomplishments in these areas. While your discussion of achievements with respect to ENG 1010 Learning Outcomes is perhaps the most important goal in the Reflective Essay, the written expression of these achievements can be strengthened when it is integrated into a broader narrative that describes where you are coming from and who you are as a student. In this narrative, you may discuss, for example, how you learned and used various reading strategies in the course, or you may describe, for example, how your ability to use composition and course management technologies, like Word and Blackboard, increased. You may also address, as appropriate, how your culture, identity, or background shaped your experiences as a student in ENG 1010. You may wish to discuss, for example, some of the following issues. • Transition to college and the larger first-year experience • Negotiation of a new identity as college student (how you adjusted; how you handled it) • Membership in groups historically underrepresented in college • Language diversity • Managing life circumstances to be able to give enough time and energy to academic work In sum, the Reflective Essay should make claims about your learning and accomplishments with respect to the two areas identified above. Essentially, the reflective essay should demonstrate what you have learned and what you can do as a result of your work in ENG 1010. In this way, a successful Reflective Essay will inspire confidence that you are prepared to move forward into your next composition courses, beginning with ENG 1020, and into the larger academic discourse community. Part Two Part Two consists of an electronic multimedia portfolio containing 3-5 selected pieces of the work you produced this semester (essay topic proposals, reading responses, essay outlines, essay first or final drafts, in-class assignments, etc.) that you can use as evidence of your learning and accomplishments and to support the claims you made in your reflective essay. ___________________________________________________________________ English 1010 Learning Outcomes Reading ● Develop reading strategies to explain, paraphrase, and summarize college-level material. ● Analyze college-level material to identify evidence that supports broader claims. Writing ● Plan and compose a well-organized thesis-driven text that engages with college-level material and is supported by relevant and sufficient evidence. ● Develop a flexible revision process that incorporates feedback to rewrite multiple drafts of a text for clarity (e.g. argument, organization, support, and audience awareness). Reflection ● Use reflective writing to evaluate and revise writing processes and drafts ● Use reflective writing to assess and articulate skill development in relation to course learning outcomes. Technology Use ● Navigate institutional web-based interfaces, such as course websites, university email, and Blackboard Learn™, to find, access and submit course material. ● Use computer-based composition technologies, including word processing software (e.g. Microsoft Word, PowerPoint), to compose college-level texts. ● Use computer-based composition technologies to read and annotate course readings and texts authored by students (e.g. peer review). Your Final Draft Should: • meet the requirements as outlined in the “Introduction/Rationale/Assignment Prompt” section above. Points for This Project • First Draft: 20 Points • Final Draft: 130 Points • Oral Presentation: 30 Points Refer to the Course Schedule (Syllabus) for Assignment Due Dates. _______________________________________________________________ Evaluation: You will be evaluated based on content, organization, and mechanics.

No expert has answered this question yet. You can browse … Read More...
Air is flowing with a constant U∞= 2 m/s velocity and T∞= 20oC temperature over a L= 2 m long flat plate maintained at constant temperature of Ts= 34oC. Starting at x=0 laminar, steady, incompressible, 2-D momentum and thermal boundary layers form over the flat plate. Air properties at film temperature are: ν=1.589×10-5 m2/s, k=0.0263 W/(mK), Pr=0.707 ρ=1.16 Kg/m3, Cp=1007 J/(KgK). The plate is 1 m wide. The approximate velocity and temperature profiles are given as: u/U∞= 2(y/ δ)-(y/ δ)2 (T- Ts)/( T∞-Ts)= 2(y/ δt)-(y/ δt)2 Approximate equation for momentum boundary layer growth is: δ/x=5.5Rex-1/2 and δ/ δt=Pr1/3 a. (15)Calculate the total heat transfer using given equations. b. (5) Compare the heat transfer with the values obtained from exact solutions. 2(30). A hot wire anemometer contains a very thin wire exposed to the turbulent flow and the wire temperature is kept constant by a bridge circuit. This was discussed in class. The wire diameter is 5 x 10-6m ,its length is 2 mm.The wire temperature is 104oC. The hot wire properties are ρ= 16,630 Kg/m3, c=162 J/(KgK), k=47W/(mK) and it is exposed to a turbulent air flow with a mean velocity of 50 m/s and temperature 50 oC, At the film temperature air properties are: ν=20.9×10-6 m2/s, k=0.030 W/(mK), Pr=0.7, ρ=0.995 Kg/m3, cp=1009 J/(KgK). Use a correlation that fits the given properties. a. (20)Calculate the power supply to the wire assuming steady state. b. (10)Approximately up to what frequencies of flow oscillations the wire can measure?(Hint: this frequency is the inverse of the wire thermal time constant)

Air is flowing with a constant U∞= 2 m/s velocity and T∞= 20oC temperature over a L= 2 m long flat plate maintained at constant temperature of Ts= 34oC. Starting at x=0 laminar, steady, incompressible, 2-D momentum and thermal boundary layers form over the flat plate. Air properties at film temperature are: ν=1.589×10-5 m2/s, k=0.0263 W/(mK), Pr=0.707 ρ=1.16 Kg/m3, Cp=1007 J/(KgK). The plate is 1 m wide. The approximate velocity and temperature profiles are given as: u/U∞= 2(y/ δ)-(y/ δ)2 (T- Ts)/( T∞-Ts)= 2(y/ δt)-(y/ δt)2 Approximate equation for momentum boundary layer growth is: δ/x=5.5Rex-1/2 and δ/ δt=Pr1/3 a. (15)Calculate the total heat transfer using given equations. b. (5) Compare the heat transfer with the values obtained from exact solutions. 2(30). A hot wire anemometer contains a very thin wire exposed to the turbulent flow and the wire temperature is kept constant by a bridge circuit. This was discussed in class. The wire diameter is 5 x 10-6m ,its length is 2 mm.The wire temperature is 104oC. The hot wire properties are ρ= 16,630 Kg/m3, c=162 J/(KgK), k=47W/(mK) and it is exposed to a turbulent air flow with a mean velocity of 50 m/s and temperature 50 oC, At the film temperature air properties are: ν=20.9×10-6 m2/s, k=0.030 W/(mK), Pr=0.7, ρ=0.995 Kg/m3, cp=1009 J/(KgK). Use a correlation that fits the given properties. a. (20)Calculate the power supply to the wire assuming steady state. b. (10)Approximately up to what frequencies of flow oscillations the wire can measure?(Hint: this frequency is the inverse of the wire thermal time constant)

info@checkyourstudy.com
Fall 2015 HRD 480 Chapter 6: Assignment Due date: Tuesday, October 13, 2015 at 11:59 PM Eastern Time As an HR specialist, you are asked “We need you to hire a nurse for our hospital” 1. The hospital doesn’t have a job description 2. The hospital doesn’t have a hiring procedure/process In a two –page- paper: No specific format 1. Explain how are you going to proceed (2pts) 2. Develop a Complete job description for the position (2pts) 3. Develop the hiring process that you will use (1pts)

Fall 2015 HRD 480 Chapter 6: Assignment Due date: Tuesday, October 13, 2015 at 11:59 PM Eastern Time As an HR specialist, you are asked “We need you to hire a nurse for our hospital” 1. The hospital doesn’t have a job description 2. The hospital doesn’t have a hiring procedure/process In a two –page- paper: No specific format 1. Explain how are you going to proceed (2pts) 2. Develop a Complete job description for the position (2pts) 3. Develop the hiring process that you will use (1pts)

info@checkyourstudy.com Whatsapp +919711743277