2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

Studies are at the present extrapolative huge employment income in … Read More...
Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________                                      Motion in 2D Simulation   Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D … Read More...
Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Standard based Curriculum In standard based curriculum, the initial point … Read More...
The limbic system is a separate part of the brain located behind the cerebellum on top of the brain stem. Select one: True False

The limbic system is a separate part of the brain located behind the cerebellum on top of the brain stem. Select one: True False

Info@checkyourstudy.com                                                                                                                                                                                       ‘False’.
Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

please email info@checkyourstudy.com
Chapter 5 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 5.1 Drawing Force Vectors Learning Goal: To practice Tactics Box 5.1 Drawing Force Vectors. To visualize how forces are exerted on objects, we can use simple diagrams such as vectors. This Tactics Box illustrates the process of drawing a force vector by using the particle model, in which objects are treated as points. TACTICS BOX 5.1 Drawing force vectors Represent the object 1. as a particle. 2. Place the tail of the force vector on the particle. 3. Draw the force vector as an arrow pointing in the proper direction and with a length proportional to the size of the force. 4. Give the vector an appropriate label. The resulting diagram for a force exerted on an object is shown in the drawing. Note that the object is represented as a black dot. Part A A book lies on a table. A pushing force parallel to the table top and directed to the right is exerted on the book. Follow the steps above to draw the force vector . Use the black dot as the particle representing the book. F  F push F push

Chapter 5 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 5.1 Drawing Force Vectors Learning Goal: To practice Tactics Box 5.1 Drawing Force Vectors. To visualize how forces are exerted on objects, we can use simple diagrams such as vectors. This Tactics Box illustrates the process of drawing a force vector by using the particle model, in which objects are treated as points. TACTICS BOX 5.1 Drawing force vectors Represent the object 1. as a particle. 2. Place the tail of the force vector on the particle. 3. Draw the force vector as an arrow pointing in the proper direction and with a length proportional to the size of the force. 4. Give the vector an appropriate label. The resulting diagram for a force exerted on an object is shown in the drawing. Note that the object is represented as a black dot. Part A A book lies on a table. A pushing force parallel to the table top and directed to the right is exerted on the book. Follow the steps above to draw the force vector . Use the black dot as the particle representing the book. F  F push F push

please email info@checkyourstudy.com
1. Discuss how the establishment of an organizational infrastructure that supports the integration of a career and succession plan competency models and value systems can help employees overcome the doom loop with respect to understanding your own career status.

1. Discuss how the establishment of an organizational infrastructure that supports the integration of a career and succession plan competency models and value systems can help employees overcome the doom loop with respect to understanding your own career status.

A number of associations or organizations are mixing up to … Read More...
1. Which of the following statements for electric field lines are true? (Give ALL correct answers, i.e., B, AC, BCD…) A) E-field lines point inward toward negative charges. B) E-field lines may cross. C) E-field lines do not begin or end in a charge-free region (except at infinity). D) Where the E-field lines are dense the E-field must be weak. E) E-field lines make circles around positive charges. F) A point charge q, released from rest will initially move along an E-field line. G) E-field lines point outward from positive charges. 2. Consider two uniformly charged parallel plates as shown above. The magnitudes of the charges are equal. (For each statement select T True, F False). A) If the plates are oppositely charged, there is no electric field at c. B) If both plates are negatively charged, the electric field at a points towards the top of the page. C) If both plates are positively charged, there is no electric field at b. 3. As shown in the figure above, a ball of mass 1.050 g and positive charge q =38.1microC is suspended on a string of negligible mass in a uniform electric field. We observe that the ball hangs at an angle of theta=15.0° from the vertical. What is the magnitude of the electric field?

1. Which of the following statements for electric field lines are true? (Give ALL correct answers, i.e., B, AC, BCD…) A) E-field lines point inward toward negative charges. B) E-field lines may cross. C) E-field lines do not begin or end in a charge-free region (except at infinity). D) Where the E-field lines are dense the E-field must be weak. E) E-field lines make circles around positive charges. F) A point charge q, released from rest will initially move along an E-field line. G) E-field lines point outward from positive charges. 2. Consider two uniformly charged parallel plates as shown above. The magnitudes of the charges are equal. (For each statement select T True, F False). A) If the plates are oppositely charged, there is no electric field at c. B) If both plates are negatively charged, the electric field at a points towards the top of the page. C) If both plates are positively charged, there is no electric field at b. 3. As shown in the figure above, a ball of mass 1.050 g and positive charge q =38.1microC is suspended on a string of negligible mass in a uniform electric field. We observe that the ball hangs at an angle of theta=15.0° from the vertical. What is the magnitude of the electric field?

info@checkyourstudy.com 1.  Which of the following statements for electric field … Read More...
PHET ElectroMagnetism Key to this Document Instructions are in black. Experimental questions that you need to solve through experimentation with an online animation are in green highlighted. Important instructions are in red highlighted. Items that need a response from you are in yellow highlighted. Please put your answers to this activity in RED. Part I- Comparing Permanent Magnets and Electromagnets: 1. Select the simulation “Magnets and Electromagnets.” It is at this link: http://phet.colorado.edu/new/simulations/sims.php?sim=Magnets_and_Electromagnets 2. Move the compass slowly along a semicircular path above the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 3. Move the compass along a semicircular path below the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 4. What do you suppose the compass needles drawn all over the screen tell you? 5. Use page 10 in your book to look up what it looks like when scientists use a drawing to represent a magnetic field. Describe the field around a bar magnet here. 6. Put the compass to the left or right of the magnet. Click “flip polarity” and notice what happens to the compass. Using the compass needle as your observation tool, describe the effect that flipping the poles of the magnet has on the magnetic field. 7. Click on the electromagnet tab along the top of the simulation window. Place the compass on the left side of the coil so that the compass center lies along the axis of the coil. <--like this 8. Move the compass along a semicircular path above the coil until you’ve put it on the opposite side of the coil. Then do the same below the coil. Notice what happens to the compass needle. Compare this answer to the answer you got to Number 2 and 3. 9. Compare the shape of the magnetic field of a bar magnet to the magnetic field of an electromagnet. 10. Use the voltage slider to change the direction of the current and investigate the shape of the magnetic field the coil using the compass after you’ve let the compass stabilize. Summarize, the effect that the direction of current has on the shape of the magnetic field around an electrified coil of wires. 11. What happens to the current in the coil when you set the voltage of the battery to zero? 12. What happens to the magnetic field around the coil when you set the voltage of the battery to zero? Part II – Investigating relationships- No Answers are written on this document after this point. All three data tables, graphs and conclusion statements go on the Google Spreadsheet that you can download from Ms. Pogge’s website. Experimental Question #1: How does distance affect the strength of the magnetic field around an electromagnet? 1. Using the Electromagnet simulation, click on “Show Field Meter.” 2. Set the battery voltage to 10V where the positive is on the right of the battery (slide the switch all the way to the right). 3. Magnetic field strength (symbol B on the top line of the meter) is measured in gauss (G). You’ll only need to record the value on the top line of the Field Meter. 4. Position zero will be right on top of the coil. Negative number positions will be to the left and positive number positions to the right of the coil. 5. Move the field meter one compass needle to the right and record the value of B at position 1. 6. This data table below will be used to help you fill in the first spreadsheet you downloaded from Ms. Pogge’s website. You will end up with 3 data tables, 3 graphs and 3 conclusion statements in your document, one for each mini-experiment you are doing. a. NOTE: Be sure to take all of your values along the horizontal axis of the coil. You’ll know you’re on the axis because the B-y measurement of the magnetic field is zero along the axis. Compass position (no units) Magnetic Field Strength ( )<--Fill in units! -5 (5 needles to the left of coil) Don’t fill in the table here...do it on the Google Spreadsheet you downloaded -4 -3 -2 -1 0 (middle of coil) 1 2 3 4 5 (5 needles to right of coil) 7. In your Google Spreadsheet: Graph the compass position on the horizontal (x) axis and magnetic field magnitude on the vertical (y) axis. 8. Make sure to label the axes and title the graph. Share this spreadsheet with your teacher. 9. Analyze your graph to discover how the two variables are related, and report the relationship between magnetic field strength and position using 1-3 complete sentences. Experimental Question #2: How does the number of coils affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the number of coils. Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet. Experimental Question #3: How does the amount of current affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the Current. (Recall that voltage is directly proportional to current….Ohm’s Law.) Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet.

PHET ElectroMagnetism Key to this Document Instructions are in black. Experimental questions that you need to solve through experimentation with an online animation are in green highlighted. Important instructions are in red highlighted. Items that need a response from you are in yellow highlighted. Please put your answers to this activity in RED. Part I- Comparing Permanent Magnets and Electromagnets: 1. Select the simulation “Magnets and Electromagnets.” It is at this link: http://phet.colorado.edu/new/simulations/sims.php?sim=Magnets_and_Electromagnets 2. Move the compass slowly along a semicircular path above the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 3. Move the compass along a semicircular path below the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 4. What do you suppose the compass needles drawn all over the screen tell you? 5. Use page 10 in your book to look up what it looks like when scientists use a drawing to represent a magnetic field. Describe the field around a bar magnet here. 6. Put the compass to the left or right of the magnet. Click “flip polarity” and notice what happens to the compass. Using the compass needle as your observation tool, describe the effect that flipping the poles of the magnet has on the magnetic field. 7. Click on the electromagnet tab along the top of the simulation window. Place the compass on the left side of the coil so that the compass center lies along the axis of the coil. <--like this 8. Move the compass along a semicircular path above the coil until you’ve put it on the opposite side of the coil. Then do the same below the coil. Notice what happens to the compass needle. Compare this answer to the answer you got to Number 2 and 3. 9. Compare the shape of the magnetic field of a bar magnet to the magnetic field of an electromagnet. 10. Use the voltage slider to change the direction of the current and investigate the shape of the magnetic field the coil using the compass after you’ve let the compass stabilize. Summarize, the effect that the direction of current has on the shape of the magnetic field around an electrified coil of wires. 11. What happens to the current in the coil when you set the voltage of the battery to zero? 12. What happens to the magnetic field around the coil when you set the voltage of the battery to zero? Part II – Investigating relationships- No Answers are written on this document after this point. All three data tables, graphs and conclusion statements go on the Google Spreadsheet that you can download from Ms. Pogge’s website. Experimental Question #1: How does distance affect the strength of the magnetic field around an electromagnet? 1. Using the Electromagnet simulation, click on “Show Field Meter.” 2. Set the battery voltage to 10V where the positive is on the right of the battery (slide the switch all the way to the right). 3. Magnetic field strength (symbol B on the top line of the meter) is measured in gauss (G). You’ll only need to record the value on the top line of the Field Meter. 4. Position zero will be right on top of the coil. Negative number positions will be to the left and positive number positions to the right of the coil. 5. Move the field meter one compass needle to the right and record the value of B at position 1. 6. This data table below will be used to help you fill in the first spreadsheet you downloaded from Ms. Pogge’s website. You will end up with 3 data tables, 3 graphs and 3 conclusion statements in your document, one for each mini-experiment you are doing. a. NOTE: Be sure to take all of your values along the horizontal axis of the coil. You’ll know you’re on the axis because the B-y measurement of the magnetic field is zero along the axis. Compass position (no units) Magnetic Field Strength ( )<--Fill in units! -5 (5 needles to the left of coil) Don’t fill in the table here...do it on the Google Spreadsheet you downloaded -4 -3 -2 -1 0 (middle of coil) 1 2 3 4 5 (5 needles to right of coil) 7. In your Google Spreadsheet: Graph the compass position on the horizontal (x) axis and magnetic field magnitude on the vertical (y) axis. 8. Make sure to label the axes and title the graph. Share this spreadsheet with your teacher. 9. Analyze your graph to discover how the two variables are related, and report the relationship between magnetic field strength and position using 1-3 complete sentences. Experimental Question #2: How does the number of coils affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the number of coils. Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet. Experimental Question #3: How does the amount of current affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the Current. (Recall that voltage is directly proportional to current….Ohm’s Law.) Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet.