Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
11. For a solution to be a buffer it must contain a certain combination of chemical species that do not react with one another. These combinations are usually either a weak acid and its or a weak base and its

11. For a solution to be a buffer it must contain a certain combination of chemical species that do not react with one another. These combinations are usually either a weak acid and its or a weak base and its

For a solution to be a buffer it must contain … Read More...
1. Discuss how the establishment of an organizational infrastructure that supports the integration of a career and succession plan competency models and value systems can help employees overcome the doom loop with respect to understanding your own career status.

1. Discuss how the establishment of an organizational infrastructure that supports the integration of a career and succession plan competency models and value systems can help employees overcome the doom loop with respect to understanding your own career status.

A number of associations or organizations are mixing up to … Read More...
High-stakes testing has become common in the United States and in many other countries. Do you think this has improved education, and why or why not?

High-stakes testing has become common in the United States and in many other countries. Do you think this has improved education, and why or why not?

I don’t think, high-stakes testing is helping. This issue in … Read More...
F7.10 The flame spread rate through porous solids increases with concurrent wind velocity. decreases with concurrent wind velocity. is independent of concurrent wind velocity. F7.11 Surface tension accelerates opposed-flow flame spread over liquid fuels. True False F7.12 Opposed-flow flame spread rates over a solid surface are typically much smaller than 1 mm/s. around 1mm/s. much greater than 1 mm/s. F7.13 Upward flame spread rate over a vertical surface is typically between 10 and 1000 mm/s. True False F7.14 The Steiner tunnel test described in ASTM standard E 84 is used to assess the fire performance of interior finish materials based on lateral flame spread over a vertical sample. True False F8.1 Describe the triad of fire growth. F8.2 Liquid pool fires reach steady burning conditions within seconds after ignition. True False F8.3 The heat of gasification of liquid fuels is typically less than 1 kJ/g. between 1 and 3 kJ/g. greater than 3 kJ/g. F8.4 The heat flux from the flame to the surface of real burning objects can usually be determined with sufficient accuracy so that reasonable burning rate predictions can be made. True False F8.5 The mass burning flux generally associated with extinction is 0.5 g/m2s. 5 g/m2s. 50 g/m2s. F8.6 The mass burning flux of a liquid pool fire is a function of only the pool diameter. only the fuel type. pool diameter and fuel type. F8.7 The energy release rate of real objects can be measured in an oxygen bomb calorimeter. an oxygen consumption calorimeter. a room/corner test. F8.8 The peak energy release rate of typical domestic upholstered furniture can be as high as 3000 kW. True False F8.9 Draw a typical curve of the mass burning flux of a char forming fuel as a function of time. F8.10 A fast fire as defined in NFPA 72B grows proportionally to t2 and reaches an energy release rate of 1 MW in 75 sec. 150 sec. 300 sec. F9.1 Air entrainment into turbulent pool fire flames is due to buoyancy. True False F9.2 The frequency of vortex shedding in turbulent pool fire flames increases with pool diameter. decreases with pool diameter. is independent of pool diameter. F9.3 The height of turbulent jet flames for a given fuel type and orifice size is independent of energy release rate. True False F9.4 The exit velocities of fuel vapors leaving a solid or liquid pool fire surface are responsible for entrainment of air in the plume. True False F9.5 The height of a turbulent pool fire flame is a function of only energy release rate. only pool diameter. energy release rate and pool diameter. F9.6 Turbulent pool fire flame heights fluctuate in time within a factor of 2. True False F9.7 The Q* value for jet fires is 102 or greater. 104 or greater. 106 or greater. F9.8 The temperature in the continuous flame region of moderate size turbulent pool fires is approximately 820°C. True False F9.9 The temperature at the maximum flame height of a turbulent pool fire flame is approximately 1200°C. 800°C. 300°C. F9.10 The adiabatic flame temperature of hydrocarbon fuels is 1700-2000°C. 2000-2300°C. 2300-2600°C. F10.1 The stoichiometric air to fuel mass ratio of hydrocarbon fuels is of the order of 1.5 g/g. 15 g/g. 150 g/g. F10.2 Give two examples of products of incomplete combustion that occur in fires. F10.3 Slight amounts of products of incomplete combustion are generated in overventilated fires. True False F10.4 The CO yield of a fire is a function of only the fuel involved. only the ventilation conditions. the fuel and the ventilation conditions. F10.5 A carboxyhemoglobin level of 40% in the blood is usually lethal. True (doubt) False F10.6 Carbon monoxide is the leading killer of people in fires. True False F10.7 HCN is a narcotic gas. an irritant gas. a fuel vapor. F10.8 The hazard to humans from narcotic gases is a function of only the concentration of the gas. only the duration of exposure. the product of concentration and duration of exposure. F10.9 The effects on lethality of CO, HCN, and reduced O2 are additive. True False F10.10 Irritant gases typically cause post-exposure fatalities. True False F10.11 Visibility through smoke improves with increasing optical density. True False F10.12 Heat stress occurs when the skin is exposed to a heat flux of 1 kW/m2. the skin reaches a temperature of 45°C. the body’s core temperature reaches 41°C.

F7.10 The flame spread rate through porous solids increases with concurrent wind velocity. decreases with concurrent wind velocity. is independent of concurrent wind velocity. F7.11 Surface tension accelerates opposed-flow flame spread over liquid fuels. True False F7.12 Opposed-flow flame spread rates over a solid surface are typically much smaller than 1 mm/s. around 1mm/s. much greater than 1 mm/s. F7.13 Upward flame spread rate over a vertical surface is typically between 10 and 1000 mm/s. True False F7.14 The Steiner tunnel test described in ASTM standard E 84 is used to assess the fire performance of interior finish materials based on lateral flame spread over a vertical sample. True False F8.1 Describe the triad of fire growth. F8.2 Liquid pool fires reach steady burning conditions within seconds after ignition. True False F8.3 The heat of gasification of liquid fuels is typically less than 1 kJ/g. between 1 and 3 kJ/g. greater than 3 kJ/g. F8.4 The heat flux from the flame to the surface of real burning objects can usually be determined with sufficient accuracy so that reasonable burning rate predictions can be made. True False F8.5 The mass burning flux generally associated with extinction is 0.5 g/m2s. 5 g/m2s. 50 g/m2s. F8.6 The mass burning flux of a liquid pool fire is a function of only the pool diameter. only the fuel type. pool diameter and fuel type. F8.7 The energy release rate of real objects can be measured in an oxygen bomb calorimeter. an oxygen consumption calorimeter. a room/corner test. F8.8 The peak energy release rate of typical domestic upholstered furniture can be as high as 3000 kW. True False F8.9 Draw a typical curve of the mass burning flux of a char forming fuel as a function of time. F8.10 A fast fire as defined in NFPA 72B grows proportionally to t2 and reaches an energy release rate of 1 MW in 75 sec. 150 sec. 300 sec. F9.1 Air entrainment into turbulent pool fire flames is due to buoyancy. True False F9.2 The frequency of vortex shedding in turbulent pool fire flames increases with pool diameter. decreases with pool diameter. is independent of pool diameter. F9.3 The height of turbulent jet flames for a given fuel type and orifice size is independent of energy release rate. True False F9.4 The exit velocities of fuel vapors leaving a solid or liquid pool fire surface are responsible for entrainment of air in the plume. True False F9.5 The height of a turbulent pool fire flame is a function of only energy release rate. only pool diameter. energy release rate and pool diameter. F9.6 Turbulent pool fire flame heights fluctuate in time within a factor of 2. True False F9.7 The Q* value for jet fires is 102 or greater. 104 or greater. 106 or greater. F9.8 The temperature in the continuous flame region of moderate size turbulent pool fires is approximately 820°C. True False F9.9 The temperature at the maximum flame height of a turbulent pool fire flame is approximately 1200°C. 800°C. 300°C. F9.10 The adiabatic flame temperature of hydrocarbon fuels is 1700-2000°C. 2000-2300°C. 2300-2600°C. F10.1 The stoichiometric air to fuel mass ratio of hydrocarbon fuels is of the order of 1.5 g/g. 15 g/g. 150 g/g. F10.2 Give two examples of products of incomplete combustion that occur in fires. F10.3 Slight amounts of products of incomplete combustion are generated in overventilated fires. True False F10.4 The CO yield of a fire is a function of only the fuel involved. only the ventilation conditions. the fuel and the ventilation conditions. F10.5 A carboxyhemoglobin level of 40% in the blood is usually lethal. True (doubt) False F10.6 Carbon monoxide is the leading killer of people in fires. True False F10.7 HCN is a narcotic gas. an irritant gas. a fuel vapor. F10.8 The hazard to humans from narcotic gases is a function of only the concentration of the gas. only the duration of exposure. the product of concentration and duration of exposure. F10.9 The effects on lethality of CO, HCN, and reduced O2 are additive. True False F10.10 Irritant gases typically cause post-exposure fatalities. True False F10.11 Visibility through smoke improves with increasing optical density. True False F10.12 Heat stress occurs when the skin is exposed to a heat flux of 1 kW/m2. the skin reaches a temperature of 45°C. the body’s core temperature reaches 41°C.

F7.10 The flame spread rate through porous solids increases with … Read More...
What is a décimas? Using the article in the reader on the décima as a reference, provide an explanation of what this is, and make mention of some of its structural characteristics

What is a décimas? Using the article in the reader on the décima as a reference, provide an explanation of what this is, and make mention of some of its structural characteristics

The term décimas is a term indication to a lone … Read More...
F6.1 Piloted ignition occurs when the lower flammable limit is reached in the gas phase in the vicinity of the ignition pilot. True False F6.2 The flashpoint of a liquid fuel is always lower than its boiling point. True False F6.3 The vapor concentration just above the surface of a boiling liquid is 100%. True False F6.4 The autoignition temperature of a liquid fuel is close to its boiling point. True False F6.5 Piloted ignition of solid fuels typically occurs at surface temperatures ranging from 250°C to 400°C, while autoignition temperatures usually exceed 500°C. True False F6.6 Except for very low heating conditions, the physical thickness of objects that exhibit “thin” piloted ignition behavior is typically of the order of 0.1-0.2 mm. 1-2 mm. 10-20 mm. F6.7 The time to piloted ignition of a “thin” object is proportional to the inverse of the net heat flux at its exposed surface. True False F6.8 The time to piloted ignition of a “thick” object is proportional to the inverse of the net heat flux at its exposed surface. True False

F6.1 Piloted ignition occurs when the lower flammable limit is reached in the gas phase in the vicinity of the ignition pilot. True False F6.2 The flashpoint of a liquid fuel is always lower than its boiling point. True False F6.3 The vapor concentration just above the surface of a boiling liquid is 100%. True False F6.4 The autoignition temperature of a liquid fuel is close to its boiling point. True False F6.5 Piloted ignition of solid fuels typically occurs at surface temperatures ranging from 250°C to 400°C, while autoignition temperatures usually exceed 500°C. True False F6.6 Except for very low heating conditions, the physical thickness of objects that exhibit “thin” piloted ignition behavior is typically of the order of 0.1-0.2 mm. 1-2 mm. 10-20 mm. F6.7 The time to piloted ignition of a “thin” object is proportional to the inverse of the net heat flux at its exposed surface. True False F6.8 The time to piloted ignition of a “thick” object is proportional to the inverse of the net heat flux at its exposed surface. True False

F6.1 Piloted ignition occurs when the lower flammable limit is … Read More...
university physics young and freedman 13th edition-Chapter Summary Chapter 9

university physics young and freedman 13th edition-Chapter Summary Chapter 9

Section 9.1 “Angular velocity,” of an object is its instantaneous … Read More...