Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You … Read More...
You work for a healthcare insurance company as an industrial engineer. As part of the company’s customer service department, there is a call center that responds to customer questions by phone. Your manager has asked you to perform an analysis of some data that the call center has collected over the last two years in an effort to determine how many workers are needed. In particular your manager wants to find out if there is a relationship between how long it takes to answer a call (independent variable) and whether or not customers will hang up (dependent variable). Is there a linear relationship between these two variables? Include a graph and analysis to support your opinion. If the goal of the call center is to have fewer than 15% of calls abandoned, how quickly must the call center respond? Learning Outcome #2. Data for Question 3 Average Answer Speed = Average number of seconds to answer an incoming call during the week % abandoned = % of calls that are abandoned (hang up) before being answered during the week.

## You work for a healthcare insurance company as an industrial engineer. As part of the company’s customer service department, there is a call center that responds to customer questions by phone. Your manager has asked you to perform an analysis of some data that the call center has collected over the last two years in an effort to determine how many workers are needed. In particular your manager wants to find out if there is a relationship between how long it takes to answer a call (independent variable) and whether or not customers will hang up (dependent variable). Is there a linear relationship between these two variables? Include a graph and analysis to support your opinion. If the goal of the call center is to have fewer than 15% of calls abandoned, how quickly must the call center respond? Learning Outcome #2. Data for Question 3 Average Answer Speed = Average number of seconds to answer an incoming call during the week % abandoned = % of calls that are abandoned (hang up) before being answered during the week.

No expert has answered this question yet. You can browse … Read More...

No expert has answered this question yet. You can browse … Read More...

– 1 – Fall 2015 EECS 338 Assignment 2 Due: … Read More...
The Rocket Equation The Tsiolovsky Rocket Equation describes the velocity that results from pushing matter (exploding rocket fuel) in the opposite direction to the direction you want to travel. This assignment requires you to do basic calculation using the Tsiolovsky Rocket Equation : v[t] = eV Log M M – bR t  – g t The parameters used are : ◼ eV exhaust velocity (m/s) ◼ pL payload (kg) ◼ fL fuel load (kg) ◼ M is the mass of the rocket (pL+fL, kg) ◼ bR the burn rate of fuel (kg/s) ◼ g the force due to gravity ms2 The variables calculated are : h(t) the height of the rocket at time t (m) v(t) the velocity of the rocket at time t (m/s) m(t) the mass of the rocket at time t (kg) Questions Question 1 (1 mark) Write an expression corresponding to the Tsiolovsky rocket equation and use integrate to find a function to describe the height of the rocket during fuel burn. Question 2 (2 marks) The fuel burns at a constant rate. Find the time (t0), velocity (vmax), and height (h0) of the rocket when the fuel runs out (calculate the time when the fuel runs out, and substitute this into the height Printed by Wolfram Mathematica Student Edition and velocity equations). Question 3 (2 marks) The second phase is when the only accelaration acting on the rocket is from gravity. This phase starts from the height and velocity of the previous question, and the velocity is given by the projectile motion equation, v(t) = vmax – g (t – t0). Use Solve to find the time when this equation equals 0. This will be the highest point the rocket reaches before returning to earth. Question 4 (1 marks) Integerate the projectile motion equation and add h0 to find the maximum height the rocket reaches. Question 5 (1 marks) Use Solve over the projectile motion equation to find the time when the height is 0. 2 assignment4.nb Printed by Wolfram Mathematica Student Edition

## The Rocket Equation The Tsiolovsky Rocket Equation describes the velocity that results from pushing matter (exploding rocket fuel) in the opposite direction to the direction you want to travel. This assignment requires you to do basic calculation using the Tsiolovsky Rocket Equation : v[t] = eV Log M M – bR t  – g t The parameters used are : ◼ eV exhaust velocity (m/s) ◼ pL payload (kg) ◼ fL fuel load (kg) ◼ M is the mass of the rocket (pL+fL, kg) ◼ bR the burn rate of fuel (kg/s) ◼ g the force due to gravity ms2 The variables calculated are : h(t) the height of the rocket at time t (m) v(t) the velocity of the rocket at time t (m/s) m(t) the mass of the rocket at time t (kg) Questions Question 1 (1 mark) Write an expression corresponding to the Tsiolovsky rocket equation and use integrate to find a function to describe the height of the rocket during fuel burn. Question 2 (2 marks) The fuel burns at a constant rate. Find the time (t0), velocity (vmax), and height (h0) of the rocket when the fuel runs out (calculate the time when the fuel runs out, and substitute this into the height Printed by Wolfram Mathematica Student Edition and velocity equations). Question 3 (2 marks) The second phase is when the only accelaration acting on the rocket is from gravity. This phase starts from the height and velocity of the previous question, and the velocity is given by the projectile motion equation, v(t) = vmax – g (t – t0). Use Solve to find the time when this equation equals 0. This will be the highest point the rocket reaches before returning to earth. Question 4 (1 marks) Integerate the projectile motion equation and add h0 to find the maximum height the rocket reaches. Question 5 (1 marks) Use Solve over the projectile motion equation to find the time when the height is 0. 2 assignment4.nb Printed by Wolfram Mathematica Student Edition

No expert has answered this question yet. You can browse … Read More...
Extra Credit Due: 11:59pm on Thursday, May 15, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . Hint 1. Which equation should you use for the man’s speed? Because the man’s speed is constant, you may use . ANSWER: c t = 0 b a x = 0 xman(t) b c t x(t) = x(0) + vt xman(t) = −b + ct