An electromagnetic wave has electric field that has maximal strength of 1000 V/m. What is the maximal strength of the magnetic field of that wave? A. 1.05 × 10 T B. 3.33 × 10 T + C. 2.14 × 10 T D. 7.63 × 10 T

An electromagnetic wave has electric field that has maximal strength of 1000 V/m. What is the maximal strength of the magnetic field of that wave? A. 1.05 × 10 T B. 3.33 × 10 T + C. 2.14 × 10 T D. 7.63 × 10 T

info@checkyourstudy.com An electromagnetic wave has electric field that has maximal … Read More...
Reading Guide 3 CHEM 101 Check here if you want your paper returned Chapter 3 – Section 3.1-3.4 Introduction to Chemistry Dr. Bragg Printed Last Name: First Name: WKUID: 1. Express in your own words the meaning of these terms: a. Hypothesis b. Law c. Theory d. Conservation e. Proportion f. Radioactive g. Atomic Number h. Mass Number i. Isotope j. Spectrum k. Ground State l. Excited State m. Quantum n. Valence o. Shell p. Subshell q. Orbital 2. Briefly describe the main points of Dalton’s Atomic Theory. On Time: Complete: Questions: Total Score: 3. Who experimentally verified the Law of Conservation of Matter? 4. Who experimentally verified the Law of Definite Proportions? 5. What are the three most important subatomic particles, and what is the charge on each? 6. Who discovered natural radioactivity? 7. What are the three main radioactive ‘particles,’ and what is the charge on each? 8. Who was the student that set up the experiments and made the observations that lead to the discovery of the nucleus of the atom? 9. Considering atomic numbers and mass numbers, which is the same among a set of isotopes and which is different? 10. What is the difference between a continuous spectrum and a line spectrum? 11. Who proposed the Shell Model of the hydrogen atom based on small energy steps between adjacent levels for electrons? 12. Which end of the electromagnetic spectrum is higher in ENERGY, ı-rays or radio waves? 13. Who proposed the mathematical wave theory that explained the existence of orbitals? 14. Give the general subshell filling order for electrons in ground state atoms. Reading Guide 3 CHEM 101 Dr. Bragg Chapter 3 – Sections 3.1 – 3.4 Introduction to Chemistry Page 2

Reading Guide 3 CHEM 101 Check here if you want your paper returned Chapter 3 – Section 3.1-3.4 Introduction to Chemistry Dr. Bragg Printed Last Name: First Name: WKUID: 1. Express in your own words the meaning of these terms: a. Hypothesis b. Law c. Theory d. Conservation e. Proportion f. Radioactive g. Atomic Number h. Mass Number i. Isotope j. Spectrum k. Ground State l. Excited State m. Quantum n. Valence o. Shell p. Subshell q. Orbital 2. Briefly describe the main points of Dalton’s Atomic Theory. On Time: Complete: Questions: Total Score: 3. Who experimentally verified the Law of Conservation of Matter? 4. Who experimentally verified the Law of Definite Proportions? 5. What are the three most important subatomic particles, and what is the charge on each? 6. Who discovered natural radioactivity? 7. What are the three main radioactive ‘particles,’ and what is the charge on each? 8. Who was the student that set up the experiments and made the observations that lead to the discovery of the nucleus of the atom? 9. Considering atomic numbers and mass numbers, which is the same among a set of isotopes and which is different? 10. What is the difference between a continuous spectrum and a line spectrum? 11. Who proposed the Shell Model of the hydrogen atom based on small energy steps between adjacent levels for electrons? 12. Which end of the electromagnetic spectrum is higher in ENERGY, ı-rays or radio waves? 13. Who proposed the mathematical wave theory that explained the existence of orbitals? 14. Give the general subshell filling order for electrons in ground state atoms. Reading Guide 3 CHEM 101 Dr. Bragg Chapter 3 – Sections 3.1 – 3.4 Introduction to Chemistry Page 2

info@checkyourstudy.com Whatsapp +919911743277
As waves approach shore, they tend to refract so that Question 42 options: waves become more parallel to the shore waves approach at a greater angle to the shore wave height decreases wavelength increases

As waves approach shore, they tend to refract so that Question 42 options: waves become more parallel to the shore waves approach at a greater angle to the shore wave height decreases wavelength increases

As waves approach shore, they tend to refract so that … Read More...
1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

info@checkyourstudy.com
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Top of Form Abstract.     Faraday Effect or Faraday … Read More...
Name___________________________________ Period_____ Investigation: Making Waves PART I: Objectives: • Learn vocabulary describing waves • Calculate the speed of a wave • Understand how amplitude affects the speed of a wave • Understand how frequency and wavelength affect the speed of a wave Open this web site: http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_on_a_String You can click on Run Now! to run the simulation online, or Run Offline to save it to your desktop. It might run faster this way. Start by Wiggling the Wrench. Spend about 5 minutes experimenting with the Tension, Manual/Pulse/Oscillate, Fixed/Loose/No end, and changing the Amplitude, Frequency and Damping. Click on Show Rulers and Timer. Practice moving the rulers around and starting/resetting the timer. Click on the Pause/Play and Step buttons to see how they work. Use these settings: Pulse, Amplitude=50, Pulse Width=35, Damping=0, Tension at High and No End. NOTE that the amplitude is just a relative scale (not centimeters). Send a single pulse down the string. This is called a TRANSVERSE PULSE. Watch the motion of the green dots.  1. As the pulse goes by from left to right, in what direction does the string move? ________________________________________________________________________________________________________________________________________________  2. A definition of TRANSVERSE is “lying across”. Why is TRANSVERSE a good name for the wave you just observed? ________________________________________________________________________________________________________________________________________________ Make another pulse, and then PAUSE the wave. Use the vertical ruler to measure the amplitude of the wave in centimeters. This is the distance from the dotted orange line to the crest of the wave. Record the amplitude in Table 1 in the first row. Now, measure the time for a pulse to travel 100 cm. To do this: • Reset the clock to 0:00 and reset the generator • Click Pause/Play—it should say PAUSED on the screen • Click Pulse • Click Pause/Play again to start a timed pulse. Pause again just as the crest (peak) of the pulse touches the window 100 cm away. Record the time for a pulse to travel 100 cm in Table 1. Run 3 time trials, and record in the table. Calculate the average time. Now, measure the amplitude and timing of pulses for two other amplitudes (one smaller than 50, one larger than 50). Do three trials at each amplitude and calculate the average times. Calculate the average wave speed for each of the three amplitudes. See below for a sample calculation. Table 1 Your measured amplitude, cm Time for pulse to travel 100 cm, seconds Average time, seconds Speed=length of string / average time Example of speed calculation: Speed = string length/ average time Speed = 100 cm/2 seconds = 50 cm/second  3. How does the amplitude of a wave affect the speed of a wave? ________________________________________________________________________ Use these settings: Oscillate, Fixed end. Try amplitude=20, frequency=51, damping=0. The result is called a periodic wave. 4. Describe the appearance of the wave you created. ________________________________________________________________________________________________________________________________________________________________________________________________________________________ You should see waves that do not move along the string. You will also see points where the string does not move at all. These waves are called STANDING WAVES. The points where the wave doesn’t move are called NODES. Pause the simulation.  5. Draw the standing wave in the box below, labeling the AMPLITUDE, WAVELENGTH and NODES of a standing wave. Use these settings: Amplitude=20, Frequency=50, Damping=0, Oscillate, No End. Reset the clock. You can also measure the wave frequency. To do this, you should pair up with another student if possible. Watch the piston go up and down to make the wave. One up and down motion represents one wave. Use the clock to measure the time required for 10 complete cycles or waves. You will also need to PAUSE the wave to measure the wavelength of the wave in centimeters (cm). The frequency of the wave is calculated in the following way: Frequency = 10 waves/# seconds for 10 cycles For example, 10 waves/5 seconds = 2 cycles per second, or 2 Hertz. Make several waves by changing the wave frequency—use numbers over 30 on the scale. For each wave, measure the wavelength using the ruler. Now, calculate the frequency. See the example in the first row of Table 2. Record the wavelength and frequency of three waves with different wavelengths. Wavelength (cm) Frequency (cycles/second or Hertz) Speed (cm/s) = Wavelength x frequency 33 cm 10 waves/5.45 sec = 1.8 Hertz 33 cm x 1.8 Hertz = 59.4 cm/second Based on the equation used to calculate the speed of a wave, answer questions 6 and 7.  6. If you increase the wavelength of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________  7. If you increase the frequency of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________ Part II: Objectives: • Interpret a 2D top view picture of a wave • Identify areas of constructive and destructive interference in 2D • Predict the behavior of water, sound, or light when you have two sources o What will happen in constructive areas o What will happen in destructive areas 1) Open the “Wave Interference” simulation from the PhET website (in Sound & Waves) 2) On the water simulation, what does the crest (peak) of the wave look like in the top view? What does the trough look like? 3) When you add two drips, what changes about the waves’ patterns? 4) What does the wave look like in the area that the two waves constructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 5) What does the wave look like in the area that the two waves destructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 6) Switch to the sound simulation. a. What do you think will happen when you put two speakers next to each other? b. Why do you think this will happen? c. Try it (putting two speakers together) and tell me what happened. 7) Now switch to the light simulation. a. What do you think will happen when you put two light sources next to each other? b. Why do you think this will happen? c. Try it (putting two light sources together) and tell me what happened. d. What happens when you use one light source and two slits? 8) What is similar about all three of these simulations (i.e. water, sound & light)? 9) How do I know that these things are waves and not particles? (Think about what would happen in the two slit experiment if they were particles).

Name___________________________________ Period_____ Investigation: Making Waves PART I: Objectives: • Learn vocabulary describing waves • Calculate the speed of a wave • Understand how amplitude affects the speed of a wave • Understand how frequency and wavelength affect the speed of a wave Open this web site: http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_on_a_String You can click on Run Now! to run the simulation online, or Run Offline to save it to your desktop. It might run faster this way. Start by Wiggling the Wrench. Spend about 5 minutes experimenting with the Tension, Manual/Pulse/Oscillate, Fixed/Loose/No end, and changing the Amplitude, Frequency and Damping. Click on Show Rulers and Timer. Practice moving the rulers around and starting/resetting the timer. Click on the Pause/Play and Step buttons to see how they work. Use these settings: Pulse, Amplitude=50, Pulse Width=35, Damping=0, Tension at High and No End. NOTE that the amplitude is just a relative scale (not centimeters). Send a single pulse down the string. This is called a TRANSVERSE PULSE. Watch the motion of the green dots.  1. As the pulse goes by from left to right, in what direction does the string move? ________________________________________________________________________________________________________________________________________________  2. A definition of TRANSVERSE is “lying across”. Why is TRANSVERSE a good name for the wave you just observed? ________________________________________________________________________________________________________________________________________________ Make another pulse, and then PAUSE the wave. Use the vertical ruler to measure the amplitude of the wave in centimeters. This is the distance from the dotted orange line to the crest of the wave. Record the amplitude in Table 1 in the first row. Now, measure the time for a pulse to travel 100 cm. To do this: • Reset the clock to 0:00 and reset the generator • Click Pause/Play—it should say PAUSED on the screen • Click Pulse • Click Pause/Play again to start a timed pulse. Pause again just as the crest (peak) of the pulse touches the window 100 cm away. Record the time for a pulse to travel 100 cm in Table 1. Run 3 time trials, and record in the table. Calculate the average time. Now, measure the amplitude and timing of pulses for two other amplitudes (one smaller than 50, one larger than 50). Do three trials at each amplitude and calculate the average times. Calculate the average wave speed for each of the three amplitudes. See below for a sample calculation. Table 1 Your measured amplitude, cm Time for pulse to travel 100 cm, seconds Average time, seconds Speed=length of string / average time Example of speed calculation: Speed = string length/ average time Speed = 100 cm/2 seconds = 50 cm/second  3. How does the amplitude of a wave affect the speed of a wave? ________________________________________________________________________ Use these settings: Oscillate, Fixed end. Try amplitude=20, frequency=51, damping=0. The result is called a periodic wave. 4. Describe the appearance of the wave you created. ________________________________________________________________________________________________________________________________________________________________________________________________________________________ You should see waves that do not move along the string. You will also see points where the string does not move at all. These waves are called STANDING WAVES. The points where the wave doesn’t move are called NODES. Pause the simulation.  5. Draw the standing wave in the box below, labeling the AMPLITUDE, WAVELENGTH and NODES of a standing wave. Use these settings: Amplitude=20, Frequency=50, Damping=0, Oscillate, No End. Reset the clock. You can also measure the wave frequency. To do this, you should pair up with another student if possible. Watch the piston go up and down to make the wave. One up and down motion represents one wave. Use the clock to measure the time required for 10 complete cycles or waves. You will also need to PAUSE the wave to measure the wavelength of the wave in centimeters (cm). The frequency of the wave is calculated in the following way: Frequency = 10 waves/# seconds for 10 cycles For example, 10 waves/5 seconds = 2 cycles per second, or 2 Hertz. Make several waves by changing the wave frequency—use numbers over 30 on the scale. For each wave, measure the wavelength using the ruler. Now, calculate the frequency. See the example in the first row of Table 2. Record the wavelength and frequency of three waves with different wavelengths. Wavelength (cm) Frequency (cycles/second or Hertz) Speed (cm/s) = Wavelength x frequency 33 cm 10 waves/5.45 sec = 1.8 Hertz 33 cm x 1.8 Hertz = 59.4 cm/second Based on the equation used to calculate the speed of a wave, answer questions 6 and 7.  6. If you increase the wavelength of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________  7. If you increase the frequency of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________ Part II: Objectives: • Interpret a 2D top view picture of a wave • Identify areas of constructive and destructive interference in 2D • Predict the behavior of water, sound, or light when you have two sources o What will happen in constructive areas o What will happen in destructive areas 1) Open the “Wave Interference” simulation from the PhET website (in Sound & Waves) 2) On the water simulation, what does the crest (peak) of the wave look like in the top view? What does the trough look like? 3) When you add two drips, what changes about the waves’ patterns? 4) What does the wave look like in the area that the two waves constructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 5) What does the wave look like in the area that the two waves destructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 6) Switch to the sound simulation. a. What do you think will happen when you put two speakers next to each other? b. Why do you think this will happen? c. Try it (putting two speakers together) and tell me what happened. 7) Now switch to the light simulation. a. What do you think will happen when you put two light sources next to each other? b. Why do you think this will happen? c. Try it (putting two light sources together) and tell me what happened. d. What happens when you use one light source and two slits? 8) What is similar about all three of these simulations (i.e. water, sound & light)? 9) How do I know that these things are waves and not particles? (Think about what would happen in the two slit experiment if they were particles).

Design of Electrical Systems Name: ______________________________ Note: All problems weighted equally. Show your work on all problems to receive partial credit. Resources: a) The Fundamental Logic Gate Family, Author Unknown b) Electric Devices and Circuit Theory 7th Edition, Boylestad c) Introductory Circuit Analysis 10th Edition, Boylestad d) Power Supplies (Voltage Regulators) Chapter 19, Boylestad e) Electronic Devices and Circuit Theory Chapter 5, Boylestad f) Operational Amplifiers Handout, Self g) Switch Mode Power Supplies, Philips Semiconductor h) NI Tutorial 13714-en October 6, 2013 i) NI Tutorial 13714-en V2.0 October 6, 2013 j) National Instruments Circuit Design Applications http://www.ni.com/multisim/applications/pro/ k) ENERGY STAR https://www.energystar.gov/index.cfm?c=most_efficient.me_comp_monitor_under_23_inches l) Manufactures Device Data Sheets 1) For the VDB shown below, please find the following quantities and plot the load line (Saturation / Cutoff), Q pt (Quiescent Point) and sketch input waveform and output wave form. Remember to test for Exact vs. Approximate Method. Given Bdc = hfe = 150 and RL of 10KΩ. Efficiency _ Class _____ Degrees ___ VR2_______ VE_______ VC _______ VCE ______ IC _______ IE _______ IB _______ PD _______ re’ _______ Av _______ mpp ______ Vout______ What is the effect of reducing RL to 500Ω ________________________________ What is the effect of reducing the Source Frequency to 50 Hz ________________ | | | | | | |____________________________________________ 2) For the following Networks, please complete the Truth Tables, Logic Gate Type, provide the Boolean Logic Expression. A | Vout 0 | 1 | Logic Gate Type _______ Boolean Logic Expression _________ A B| Vout 0 0| 0 1| 1 0| 1 1| Logic Gate Type _______ Boolean Logic Expression _________ A B C| Vout 0 0 0| 0 0 1| 0 1 0| 0 1 1| 1 0 0| 1 0 1| 1 1 0| 1 1 1| Logic Gate Type _______ Boolean Logic Expression _________ Operation of Transistors ____________ 3) For the Network shown below, please refer to Electronic Devices and Circuit Theory Chapter 5, Boylestad to solve for the following values: Given: Bdc1 = hfe1 = 55 Bdc2 = hfe2 = 70 Bdc Total ______ IB1 _________ IB2 _________ VC1 __________ VC2 __________ VE1 __________ VE2 __________ What is this Transistor Configuration? _______________________ What are the advantages of this Transistor Configuration? _________________________________________ _________________________________________ _________________________________________ _________________________________________ 4) Design a Four (4) output Power Supply with the following Specifications, Provide a clean schematic sketch of circuit (Please provide the schematic sketch on a separate piece of graph paper). Use a straight edge and label everything. Refer to Data Sheets as necessary. Specifications: 120 VAC rms 60 Hz Source Positive + 15 VDC Driving a 15Ω 20 Watt Resistive Load Positive +8 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 12 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 5 VDC Driving a 4Ω 2 Watt Resistive Load Parts available (Must use parts): 1x 120 VAC 40 Volt 3.5 Amp Center Tap Transformer 1x Fuse 1x Bridge Rectifier 12 Amp 1x LM7808 1x LM7815 1x LM7905 1x LM7912 Psource _____________ Fuse size with 25% Service Factor, 1-10 Amps increments of 1A, 10 – 50 Amps increments of 5 Amps ______ Are we exceeding Power Dissipation of any components? If so please identify and provide a brief explanation: _________________________________________________________________ _________________________________________________________________ 5) For the circuit shown below please calculate the following quantities, and Plot the Trans-Conductance Curve (Transfer Curve), (Please provide the plot on a separate piece of graph paper): You will need to refer to the 2N3819 N-Channel JFET ON Semiconductor Data Sheet Posted on Bb. VDS _________ VP ___________ VGS(off) ______ VS __________ VD __________ VG __________ PDD _________ PSource ______ VGSQ ________ IDQ __________ 6) Determine both the Upper and Lower Cutoff frequencies. Sketch Bode plot and label everything including dB Role-Off. Construct Network in Multisim and perform AC Analysis verifying frequency response and Upper and Lower Cutoff Frequencies in support of your calculations. Attach Screen shot of your Multisim Model and AC Analysis. Repeat the above for a 2nd Order Active BP Filter. You will need to research this configuration. Make sure that you use the same values for R and C. Upper and Lower Cutoff Frequencies are determined by for the 2nd Order Active BP Filter fc = 1/(2(3.14)SQRT(R1R2C1C2)). Demonstrate a change in Roll-Off from 1st Order to 2nd Order. First Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | | |_____________________________________________________________ Second Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | |_____________________________________________________________ 7) The following questions relate to LED Backlight LCD Monitors. (Please feel free to use more paper if need be). See Resources. Please explain the differences between LED Backlight LCD Monitor, LCD and CCFL Monitors (Cold Cathode Fluorescent Lamp) Monitors. What are some advantages of LED Backlight LCD Monitors when compared with LCD and CCFL Monitors? What color LEDs are used in the creation of an LED Backlight LCD Monitor? Does a Black Background use less energy than a White Background? If you can believe the hype, how and why are LED Backlight LCD Monitors among the most energy efficient, higher than heirs apparent? 8) In this problem the goal is to verify the Transfer Characteristics of the 2N7000G Enhancement Mode N-Channel MOSFET against the manufactures Data Sheets. Please create in Multisim a Model as exampled below. First Plot by hand on Graph Paper various VGS Voltages vs ID. Second simulate using the DC Sweep Analysis. From these results verify against the 2N7000G ON Semiconductor Data Sheet Posted on Bb, remembering that the 2N7000G ON Semiconductor Data Sheet includes both Tabulated Data and Figure 2. Transfer Characteristics. Attach all results, screen shots and write a brief description of your work. • I estimate that my mark for this exam will be: ________ % • Time spent on this exam: __________ Hours • Average of time spent per week on work for EGR-330 (outside class sessions): ______________ Hours

Design of Electrical Systems Name: ______________________________ Note: All problems weighted equally. Show your work on all problems to receive partial credit. Resources: a) The Fundamental Logic Gate Family, Author Unknown b) Electric Devices and Circuit Theory 7th Edition, Boylestad c) Introductory Circuit Analysis 10th Edition, Boylestad d) Power Supplies (Voltage Regulators) Chapter 19, Boylestad e) Electronic Devices and Circuit Theory Chapter 5, Boylestad f) Operational Amplifiers Handout, Self g) Switch Mode Power Supplies, Philips Semiconductor h) NI Tutorial 13714-en October 6, 2013 i) NI Tutorial 13714-en V2.0 October 6, 2013 j) National Instruments Circuit Design Applications http://www.ni.com/multisim/applications/pro/ k) ENERGY STAR https://www.energystar.gov/index.cfm?c=most_efficient.me_comp_monitor_under_23_inches l) Manufactures Device Data Sheets 1) For the VDB shown below, please find the following quantities and plot the load line (Saturation / Cutoff), Q pt (Quiescent Point) and sketch input waveform and output wave form. Remember to test for Exact vs. Approximate Method. Given Bdc = hfe = 150 and RL of 10KΩ. Efficiency _ Class _____ Degrees ___ VR2_______ VE_______ VC _______ VCE ______ IC _______ IE _______ IB _______ PD _______ re’ _______ Av _______ mpp ______ Vout______ What is the effect of reducing RL to 500Ω ________________________________ What is the effect of reducing the Source Frequency to 50 Hz ________________ | | | | | | |____________________________________________ 2) For the following Networks, please complete the Truth Tables, Logic Gate Type, provide the Boolean Logic Expression. A | Vout 0 | 1 | Logic Gate Type _______ Boolean Logic Expression _________ A B| Vout 0 0| 0 1| 1 0| 1 1| Logic Gate Type _______ Boolean Logic Expression _________ A B C| Vout 0 0 0| 0 0 1| 0 1 0| 0 1 1| 1 0 0| 1 0 1| 1 1 0| 1 1 1| Logic Gate Type _______ Boolean Logic Expression _________ Operation of Transistors ____________ 3) For the Network shown below, please refer to Electronic Devices and Circuit Theory Chapter 5, Boylestad to solve for the following values: Given: Bdc1 = hfe1 = 55 Bdc2 = hfe2 = 70 Bdc Total ______ IB1 _________ IB2 _________ VC1 __________ VC2 __________ VE1 __________ VE2 __________ What is this Transistor Configuration? _______________________ What are the advantages of this Transistor Configuration? _________________________________________ _________________________________________ _________________________________________ _________________________________________ 4) Design a Four (4) output Power Supply with the following Specifications, Provide a clean schematic sketch of circuit (Please provide the schematic sketch on a separate piece of graph paper). Use a straight edge and label everything. Refer to Data Sheets as necessary. Specifications: 120 VAC rms 60 Hz Source Positive + 15 VDC Driving a 15Ω 20 Watt Resistive Load Positive +8 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 12 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 5 VDC Driving a 4Ω 2 Watt Resistive Load Parts available (Must use parts): 1x 120 VAC 40 Volt 3.5 Amp Center Tap Transformer 1x Fuse 1x Bridge Rectifier 12 Amp 1x LM7808 1x LM7815 1x LM7905 1x LM7912 Psource _____________ Fuse size with 25% Service Factor, 1-10 Amps increments of 1A, 10 – 50 Amps increments of 5 Amps ______ Are we exceeding Power Dissipation of any components? If so please identify and provide a brief explanation: _________________________________________________________________ _________________________________________________________________ 5) For the circuit shown below please calculate the following quantities, and Plot the Trans-Conductance Curve (Transfer Curve), (Please provide the plot on a separate piece of graph paper): You will need to refer to the 2N3819 N-Channel JFET ON Semiconductor Data Sheet Posted on Bb. VDS _________ VP ___________ VGS(off) ______ VS __________ VD __________ VG __________ PDD _________ PSource ______ VGSQ ________ IDQ __________ 6) Determine both the Upper and Lower Cutoff frequencies. Sketch Bode plot and label everything including dB Role-Off. Construct Network in Multisim and perform AC Analysis verifying frequency response and Upper and Lower Cutoff Frequencies in support of your calculations. Attach Screen shot of your Multisim Model and AC Analysis. Repeat the above for a 2nd Order Active BP Filter. You will need to research this configuration. Make sure that you use the same values for R and C. Upper and Lower Cutoff Frequencies are determined by for the 2nd Order Active BP Filter fc = 1/(2(3.14)SQRT(R1R2C1C2)). Demonstrate a change in Roll-Off from 1st Order to 2nd Order. First Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | | |_____________________________________________________________ Second Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | |_____________________________________________________________ 7) The following questions relate to LED Backlight LCD Monitors. (Please feel free to use more paper if need be). See Resources. Please explain the differences between LED Backlight LCD Monitor, LCD and CCFL Monitors (Cold Cathode Fluorescent Lamp) Monitors. What are some advantages of LED Backlight LCD Monitors when compared with LCD and CCFL Monitors? What color LEDs are used in the creation of an LED Backlight LCD Monitor? Does a Black Background use less energy than a White Background? If you can believe the hype, how and why are LED Backlight LCD Monitors among the most energy efficient, higher than heirs apparent? 8) In this problem the goal is to verify the Transfer Characteristics of the 2N7000G Enhancement Mode N-Channel MOSFET against the manufactures Data Sheets. Please create in Multisim a Model as exampled below. First Plot by hand on Graph Paper various VGS Voltages vs ID. Second simulate using the DC Sweep Analysis. From these results verify against the 2N7000G ON Semiconductor Data Sheet Posted on Bb, remembering that the 2N7000G ON Semiconductor Data Sheet includes both Tabulated Data and Figure 2. Transfer Characteristics. Attach all results, screen shots and write a brief description of your work. • I estimate that my mark for this exam will be: ________ % • Time spent on this exam: __________ Hours • Average of time spent per week on work for EGR-330 (outside class sessions): ______________ Hours

info@checkyourstudy.com Operations Team Whatsapp( +91 9911743277)
Lab Description: Follow the instructions in the lab tasks below to complete Problems 1 through 4. These problems will guide you in observing signal delays and timing hazards of logic circuits (both Sum-of-Products (SOP) and Product-of-Sums (POS) circuits). These problems will also guide you in adding circuitry to eliminate a timing hazard. Use VHDL to design the circuits. Carefully follow the directions provided in the lab tasks below. Write your answers to the questions asked by the problems. Do not print out the VHDL code and waveforms as asked by the problems, instead include these on the cover sheet for this lab and print this out when you are done. Do not worry about annotating or putting arrows/notes on the waveforms–just make sure any signals or transitions of interest are shown in your screenshot. For each problem, use VHDL assignment statements for each gate of the Boolean expression. You must add delay for each gate and inverter as described by the problem. Do this by using the “after” statement: Z <= (A and B) after 1 ns; Refer to Digilent Real Digital Module 8 for more information about the "after" statement. Lab Tasks: 1. Complete Problem 1 of Project 8. Simulate all input combinations for this SOP (Sum-of-Products) expression. However, be aware that specific input sequences are required to observe a timing hazard. The problem states that you will need to observe the output when B and C are both high (logic 1) and A transitions from high to low to high (logic 1 to 0, then back to 1). 2. Complete Problem 4 of Project 8. Increase the delay of the OR gate as specified and re-simulate to answer the questions. 3. Complete Problem 2 of Project 8. Change the delay of the OR gate back to the 1 ns that you used for Problem 1. Add the new logic gate (with delay) to your VHDL for the SOP expression and re-simulate to answer the questions. 4. Complete Problem 3 of Project 8. You may create any POS (Product-of-Sums) expression for this problem, however, not all POS expressions will have a timing hazard (so spend some time thinking about how a timing hazard can be generated with a POS expression). Once again, simulate all input combinations for your POS expression but be aware that specific input sequences are required to observe a timing hazard. For this problem, you will also add the new logic gate (with delay) to your VHDL for your POS expression in order to eliminate the timing hazard; you will need to re-simulate with this additional logic gate in order to answer the questions. Problem 1. Implement the function Y = A’.B + A.C in the VHDL tool. Define the INV, OR and two AND operations separately, and give each operation a 1ns delay. Simulate the circuit with all possible combinations of inputs. Watch all circuit nets (inputs, outputs, and intermediate nets) during the simulation. Answer the questions below. Observe the outputs of the AND gates and the overall circuit output when B and C are both high, and A transitions from H to L and then from L to H (you may want to create another simulation to focus on this behavior). What output behavior do you notice when A transitions? What happens when A transitions and B or C are held a ‘0’? How long is the output glitch? _______ Is it positive ( ) or negative ( ) (circle one)? Change the delay through the inverter to 2ns, and resimulate. Now how long is output glitch? ______ What can you say about the relationship between the inverter gate delay and the length of the timing glitch? Based on this simple experiment, an SOP circuit can exhibit positive/negative glitches (circle one) when an input that arrives at one AND gate in a complemented form and another AND gate in uncomplemented form transitions from a _____ to a _____. Problem 2. Enter the logic equation from problem 1 in the K-map below, and loop the equation with redundant term included. Add the redundant term to the Xilinx circuit, re-simulate, and answer the questions. B C A 00 01 11 10 0 1 F Did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Problem 3. Create a three-input POS circuit to illustrate the formation of a glitch. Drive the simulator to illustrate a glitch in the POS circuit, and answer the questions below. A POS circuit can exhibit a positive/negative glitch (circle one) when an input that arrives at one OR gate in a complemented form and another OR gate in un-complemented form transitions from a _____ to a _____. Write the POS equation you used to show the glitch: Enter the equation in the K-map below, loop the original equation with the redundant term, add the redundant gate to your Xilinx circuit, and resimulate. How did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Print and submit the circuits and simulation output, label the output glitches in the simulation output, and draw arrows on the simulation output between the events that caused the glitches (i.e., a transition in an input signal) and the glitches themselves. Problem 4. Copy the SOP circuit above to a new VHDL file, and increase the delay of the output OR gate. Simulate the circuit and answer the questions below. How did adding delay to the output gate change the output transition? Does adding delay to the output gate change the circuit’s glitch behavior in any way? Name: Signal Delays Date: Designing with VHDL Grade Item Grade Five segments of VHDL Code for Problems 1-4: /10 Five simulation screenshots for Problems 1-4: /10 Questions from Problems 1-4: /16 Total Grade: /36 VHDL Code: Copy-paste your VHDL design code (just the code you wrote) for: • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshots: Use the “Print Screen” button to capture your screenshot (it should show the entire screen, not just the window of the program). • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshot Tips: (you can delete this once you capture your screenshot) 1. Make the “Wave” window large by clicking the “+” button near the upper-right of the window 2. Click the “Zoom Full” button (looks like a blue/green-filled magnifying glass) to enlarge your waveforms 3. In order to not print a lot of black, change the color scheme of the “Wave” window: 3.1. Click ToolsEdit Preferences… 3.2. The “By Window” tab should be selected, then click Wave Windows in the “Window List” to the left 3.3. Scroll to the bottom of the “Wave Windows Color Scheme” list and click waveBackground. Then click white in the color “Palette” at the right of the screen. 3.4. Now color the waveforms and text black: 3.4.1. Click LOGIC_0 in the “Wave Windows Color Scheme.” Then click black in the color “Palette” at the right of the screen. 3.4.2. Repeat this for LOGIC_1, timeColor, and cursorColor (if you have a cursor you want to print) 3.5. Once you have captured your screenshot, you can click the Reset Defaults button to restore the “Wave” window to its original color scheme Questions: (Please use this cover sheet to type and print your responses) 1. List the references you used for this lab assignment (e.g. sources/websites used or students with whom you discussed this assignment) 2. Do you have any comments or suggestions for this lab exercise?

Lab Description: Follow the instructions in the lab tasks below to complete Problems 1 through 4. These problems will guide you in observing signal delays and timing hazards of logic circuits (both Sum-of-Products (SOP) and Product-of-Sums (POS) circuits). These problems will also guide you in adding circuitry to eliminate a timing hazard. Use VHDL to design the circuits. Carefully follow the directions provided in the lab tasks below. Write your answers to the questions asked by the problems. Do not print out the VHDL code and waveforms as asked by the problems, instead include these on the cover sheet for this lab and print this out when you are done. Do not worry about annotating or putting arrows/notes on the waveforms–just make sure any signals or transitions of interest are shown in your screenshot. For each problem, use VHDL assignment statements for each gate of the Boolean expression. You must add delay for each gate and inverter as described by the problem. Do this by using the “after” statement: Z <= (A and B) after 1 ns; Refer to Digilent Real Digital Module 8 for more information about the "after" statement. Lab Tasks: 1. Complete Problem 1 of Project 8. Simulate all input combinations for this SOP (Sum-of-Products) expression. However, be aware that specific input sequences are required to observe a timing hazard. The problem states that you will need to observe the output when B and C are both high (logic 1) and A transitions from high to low to high (logic 1 to 0, then back to 1). 2. Complete Problem 4 of Project 8. Increase the delay of the OR gate as specified and re-simulate to answer the questions. 3. Complete Problem 2 of Project 8. Change the delay of the OR gate back to the 1 ns that you used for Problem 1. Add the new logic gate (with delay) to your VHDL for the SOP expression and re-simulate to answer the questions. 4. Complete Problem 3 of Project 8. You may create any POS (Product-of-Sums) expression for this problem, however, not all POS expressions will have a timing hazard (so spend some time thinking about how a timing hazard can be generated with a POS expression). Once again, simulate all input combinations for your POS expression but be aware that specific input sequences are required to observe a timing hazard. For this problem, you will also add the new logic gate (with delay) to your VHDL for your POS expression in order to eliminate the timing hazard; you will need to re-simulate with this additional logic gate in order to answer the questions. Problem 1. Implement the function Y = A’.B + A.C in the VHDL tool. Define the INV, OR and two AND operations separately, and give each operation a 1ns delay. Simulate the circuit with all possible combinations of inputs. Watch all circuit nets (inputs, outputs, and intermediate nets) during the simulation. Answer the questions below. Observe the outputs of the AND gates and the overall circuit output when B and C are both high, and A transitions from H to L and then from L to H (you may want to create another simulation to focus on this behavior). What output behavior do you notice when A transitions? What happens when A transitions and B or C are held a ‘0’? How long is the output glitch? _______ Is it positive ( ) or negative ( ) (circle one)? Change the delay through the inverter to 2ns, and resimulate. Now how long is output glitch? ______ What can you say about the relationship between the inverter gate delay and the length of the timing glitch? Based on this simple experiment, an SOP circuit can exhibit positive/negative glitches (circle one) when an input that arrives at one AND gate in a complemented form and another AND gate in uncomplemented form transitions from a _____ to a _____. Problem 2. Enter the logic equation from problem 1 in the K-map below, and loop the equation with redundant term included. Add the redundant term to the Xilinx circuit, re-simulate, and answer the questions. B C A 00 01 11 10 0 1 F Did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Problem 3. Create a three-input POS circuit to illustrate the formation of a glitch. Drive the simulator to illustrate a glitch in the POS circuit, and answer the questions below. A POS circuit can exhibit a positive/negative glitch (circle one) when an input that arrives at one OR gate in a complemented form and another OR gate in un-complemented form transitions from a _____ to a _____. Write the POS equation you used to show the glitch: Enter the equation in the K-map below, loop the original equation with the redundant term, add the redundant gate to your Xilinx circuit, and resimulate. How did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Print and submit the circuits and simulation output, label the output glitches in the simulation output, and draw arrows on the simulation output between the events that caused the glitches (i.e., a transition in an input signal) and the glitches themselves. Problem 4. Copy the SOP circuit above to a new VHDL file, and increase the delay of the output OR gate. Simulate the circuit and answer the questions below. How did adding delay to the output gate change the output transition? Does adding delay to the output gate change the circuit’s glitch behavior in any way? Name: Signal Delays Date: Designing with VHDL Grade Item Grade Five segments of VHDL Code for Problems 1-4: /10 Five simulation screenshots for Problems 1-4: /10 Questions from Problems 1-4: /16 Total Grade: /36 VHDL Code: Copy-paste your VHDL design code (just the code you wrote) for: • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshots: Use the “Print Screen” button to capture your screenshot (it should show the entire screen, not just the window of the program). • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshot Tips: (you can delete this once you capture your screenshot) 1. Make the “Wave” window large by clicking the “+” button near the upper-right of the window 2. Click the “Zoom Full” button (looks like a blue/green-filled magnifying glass) to enlarge your waveforms 3. In order to not print a lot of black, change the color scheme of the “Wave” window: 3.1. Click ToolsEdit Preferences… 3.2. The “By Window” tab should be selected, then click Wave Windows in the “Window List” to the left 3.3. Scroll to the bottom of the “Wave Windows Color Scheme” list and click waveBackground. Then click white in the color “Palette” at the right of the screen. 3.4. Now color the waveforms and text black: 3.4.1. Click LOGIC_0 in the “Wave Windows Color Scheme.” Then click black in the color “Palette” at the right of the screen. 3.4.2. Repeat this for LOGIC_1, timeColor, and cursorColor (if you have a cursor you want to print) 3.5. Once you have captured your screenshot, you can click the Reset Defaults button to restore the “Wave” window to its original color scheme Questions: (Please use this cover sheet to type and print your responses) 1. List the references you used for this lab assignment (e.g. sources/websites used or students with whom you discussed this assignment) 2. Do you have any comments or suggestions for this lab exercise?

checkyourstudy.com Whatsapp +919911743277